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The challenge of innovation is that we are all boxed in by what we know, by our assump-

tions about how things work. Innovation is right in front of us—we just need to see past

our own assumptions. Forget what you know.

—Scott Karp on Google’s Adwords Select—
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1 Introduction

The online advertisement market is one of the most blossoming and rapidly growing

markets today and billions of dollars worth of keywords are sold every year. The revenue

of the major player in the market, Google, added up to about $ 4.226 billion in 2008. On

the Forbes Global 20001, a list of the 2000 largest companies in the world, Google was

ranked in position 155. In order to demonstrate the immense dimensions of the Internet

advertisement market, it is found in an earlier version of (Edelman, Ostrovsky,

Schwarz [2007]) from October 2005:

“The combined market capitalization of Google and Yahoo! is over $ 125

billion. In comparison, the combined market capitalization of all US airlines

is about $ 20 billion.”

Today, the market capitalization of Google alone is about $ 125.3 billion. The dominant

part of sales in the Internet advertising market is organized by an auction mechanism,

the so-called generalized second-price auction (GSP), that was introduced in its current

version not earlier than February 2002 by Google. This mechanism is subject of our

study. We will investigate the strategic implications of this mechanism, i.e. we will

investigate the set of Nash equilibria; introduce the notion of mediators and question

whether it is vulnerable to collusion by bidders who use a mediation device in order to

do so.

The mechanism works as follows: Whenever an Internet user enters a query, she

will be redirected to a page of results, on which she finds a list of so-called sponsored

links next to the list of results, which are clearly distinguishable from the ordinary search

1http://www.forbes.com/lists/2009/18/global-09_The-Global-2000_Rank_print.html

4

http://www.forbes.com/lists/2009/18/global-09_The-Global-2000_Rank_print.html


1 Introduction

results. These sponsored links are paid advertisements, targeted to the specific keywords

that users enter. When a user clicks on a link, she will be redirected to the respective

advertiser’s page. The search engine charges a certain amount of money from each

advertiser for every click on his advertisement depending on the keyword’s popularity,

as well as for the position in which he is shown. In particular, there is a limited number

of ads that can be shown on a page, and links that are shown on a higher position on

the screen are likely to be clicked more often. Advertisers submit one-dimensional bids

for each keyword they are interested in and, finally, they are shown in decreasing order

of their bids whenever the respective keyword is entered by a user. The auction is highly

dynamic, since bidders can adjust their bids at any point in time, and different links are

shown for different keywords. Each advertiser has to pay the amount of the bid that

the advertiser has submitted that is allocated to the position directly below him plus a

minimal increment. The auction is called a generalized second-price auction since it is an

intuitive extension of the principle of the well known single-item second-price auction.

If there were only one position, the mechanism would be strategically equivalent to the

famous Vickrey-Clarke-Groves (VCG) auction. However, since there is, in general, more

than one position, GSP is no longer equivalent to the VCG auction. It lacks some of

the desirable properties such as incentive-compatibility, i.e. truth-telling is a weakly

dominant strategy for every bidder. In addition, it does not possess an equilibrium in

dominant strategies neither.

In particular, we will analyze the set of Nash equilibria of the game induced by the gen-

eralized second-price auction. It can be shown that multiple equilibria exist, and among

the set of symmetric Nash equilibria, an equilibrium exists with the same outcome as

if the auction were designed according to the rules of VCG. Players are ranked accord-

ing to their true valuations and they are charged VCG payments. This is the socially

optimal outcome for the bidders and the worst outcome for the search engine, which is

somewhat surprising, since, the opposite is true of general multiple object auctions, see

for example (Krishna [2002]):

“Among all mechanisms for allocating multiple objects that are efficient, in-
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1 Introduction

centive compatible and individually rational, the VCG mechanism maximizes

the expected payment of each agent.”

We will derive our results by following two different approaches—those of (Varian

[2007]), who analyzes bounds of equilibrium bids in a symmetric Nash equilibrium,

and of (Edelman, Ostrovsky, Schwarz [2007]), who develop the concept of locally

envy-free equilibria. In a locally envy-free equilibrium, every bidder prefers his current

position to the position of the player directly above him. In fact, we will show that both

equilibrium concepts deliver the same results since they are strategically equivalent.

However, as there are multiple equilibria, and from the perspective of the bidders,

the VCG equivalent outcome is socially optimal, bidders can improve their utility by

coordinating to the VCG equilibrium over any other equilibrium of the game. (Edel-

man, Ostrovsky, Schwarz [2007]) show by means of a generalized English auction

(that corresponds strategically to the generalized second-price auction) that bidders may

emerge to coordinate with the VCG outcome in a dynamic framework through simple

strategies, i.e. by raising their bids incrementally until it is no longer profitable. Another

way to attain the VCG equivalent equilibrium is by the use of a mediator. In the thesis

at hand, we will focus on mediators in terms of (Ashlagi et al. [2008]):

“A mediator for a given game is a reliable entity that can interact with the

players and perform actions on their behalf. However, a mediator cannot

enforce behavior.”

Every player is free to use the service of the mediator or participate in the game directly.

(Ashlagi et al. [2008]) design a mediator that implements the VCG equivalent out-

come such that it is an ex post equilibrium for every bidder to use the service of the

mediator and report his valuation truthfully. We will present their results in some detail

in Chapter 4. While a mediator that implements the VCG equivalent outcome may

already be regarded as a form of collusive behavior on the part of the bidders, since it

coordinates on the best social equilibrium for the bidders and the worst for the search

engine, we examine if a mediator exists that is able to coordinate the bidders to achieve
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1 Introduction

even more profitable, collusive outcomes. Our focus is on efficient collusion, i.e. collu-

sive agreements that implement an allocation of players and positions that is consistent

with the order of players’ true valuations. We find that no such mediator in the fashion

of (Ashlagi et al. [2008]) is able to do so. Furthermore, we question if collusion be-

comes feasible by equipping the mediator with the additional ability to facilitate transfer

payments among bidders. In our analysis, we allow for static as well as repeated play.

In Chapter 2 we give a short review on the evolution of sponsored search auctions and

introduce a formal model of position auctions, as we will say in place of sponsored search

auctions in the remainder of this thesis, since it more accurately depicts the nature

of the auctions, i.e. assigning players to positions on a screen. Chapter 3 analyzes

equilibrium behavior and outcomes in such a framework. Chapter 4 introduces the

concept of mediators and applies it to the context of position auctions. A mediator

is presented that implements VCG in a generalized second-price auction. Chapter 5

investigates GSP’s vulnerability to collusion. In Chapter 6, we present some variations

of our model. Chapter 7 concludes.

7



2 Position Auctions

2.1 Evolution

The story of Internet advertising began around the year 1994. In the early days of

Internet advertising, the predominant format of advertisements was the so-called banner

ads. These were sold on a CPM (cost per thousand impressions) basis, i.e. advertisers

paid a fixed amount of money for a fixed number of times their ad was shown, typically

one thousand impressions. Single contracts were negotiated on a case-by-case basis,

market dynamics were at most moderate and revenues were insignificant compared to

what would follow some years later. But in 1997, the Internet advertisement market

was revolutionized by GoTo, which was renamed to Overture some time later and was

finally acquired by Yahoo!. A completely new way of selling advertisements on the

web was created. Not only did advertisers no longer have to pay for a fixed number of

impressions anymore, but they were also charged a price per click, i.e. for every time

a user was redirected from a search engine to their respective web site. Furthermore,

advertisements became targeted. Each visitor to a web site was no longer shown the same

banner, advertisements were now shown to a user whenever she entered an appropriate

keyword into a search query. Despite these remarkable features, the new mechanism

brought considerable innovation in many more ways. First, it served as a compromise

in terms of what was essentially sold. Advertisers are in fact interested in attracting

customers who finally purchase a product, while the search engine’s goal is to maximize

the profit for every query that is performed by a user. While the former suggests a

pricing model in which a payment has to be made only if a customer actually purchases
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2 Position Auctions

a product, the latter suggest cost per impression pricing. Furthermore, the mechanism

overcame manual, cost-intensive negotiations for each advertisement by introducing a

kind of automated self-serve interface on an auction basis. Until the first years of the

new millennium, Overture, which implemented pay-per-click advertisement for other

web sites, significantly outperformed Google in terms of revenue by an amount of $

288 million in 2001, while Google earned about $ 86.4 million in the same year. The

initial auction format by Overture was a first-price format, i.e. bidders were charged

to pay the bid they submitted on a per-click basis. But this pricing rule turned out to

be inefficient. Due to the dynamic nature of ad auctions, bidder’s are free to change

their bid whenever they want to, it occurred that bidders adjusted their bids frequently

in response to other bidders’ behavior. In particular, as shown e.g. in (Edelman,

Ostrovsky [2005]), the first-price format used by Overture did not possess a stable

equilibrium, and “cycling” bids were observed in practice. Bidders subsequently raised

their bids by an increment above competitor’s bids until it was no longer profitable and

then dropped back to the minimum bid, which yielded inefficiency for both the search

engine and the bidders. Inefficiency from the perspective of the bidders, since the bidder

with the highest valuation did not obtain the highest position over the whole period of

time, and inefficiency for the search engine, since bids were below equilibrium bids of

alternative pricing mechanisms over considerable periods of time. Hence the mechanism

caused inefficient allocations, created volatile prices and offered incentives to invest in

automated robots and other software that would offer bidders advantages over other

bidders who could not react as quickly on changing bids. Clearly, such investments are

socially inefficient. Finally, in February 2002, Google introduced a new version of its ad

program AdWords, that initially sold ads on CPM basis. AdWords Select came along

with a considerable number of innovations that were destined to once more change the

market fundamentally. In order to overcome the inefficiencies due to cycling bids, Google

introduced a second-price format which was less susceptible to gaming. Another seminal

innovation was the introduction of relevance. Whenever bidders are ranked according to

their bid only, a bidder can obtain the top position on the screen simply by submitting
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2 Position Auctions

the highest bid. However, if some bidders attract more users than others to click on

a link and thus generate higher profits for the search engine, but are assigned to lower

positions or not shown at all, this is clearly inefficient. Hence, Google included these

bidder dependent probabilities of being clicked by multiplying each bidders bid with its

estimated click-through rate and ranked the bidders accordingly. While Google remains

true to this model to this day, Yahoo! switched to the second-price format shortly after

it was introduced by Google, but still ranks bidders purely by their bids. Today, Google

earns a revenue of approximately $ 22 billion, mostly from selling ads. Revenue of Yahoo!

aggregates to about $ 7.2 billion annually.1

We will introduce a formal model of position auctions in the following chapter. We will

assume the estimated click-through rates to be identical for each bidder, in which case

both models are equivalent. In Chapter 6 we will relax this assumption and allow for

varying click-through rates and show that most of our forthcoming findings will emerge

to hold in adjusted versions.

2.2 Model Environment

In the existing literature, position auctions were modeled as games of complete infor-

mation by (Edelman, Ostrovsky, Schwarz [2007]) and (Varian [2007]) as well as

games of incomplete information, see for example (Ashlagi et al. [2008]) or (Lahaie

[2006]). Independent of the information setting that will be applied, position auctions

share an identical basic environment EP .

For a specific keyword, there is a finite number of positions j ∈ K = {1, . . . ,m},

i.e. positions on the screen where ads related to the keyword can be displayed. There

is a finite number of bidders i ∈ N = {1, . . . , n}, and without loss of generality, there

are more bidders than slots, n > k. For each position j ∈ K, there exists a positive

number αj > 0, the click-through rate of position j. In the following, it is assumed

1Revenue numbers are taken from www.wolframalpha.com, which emerges to be an exciting new

competitor of established search engines.
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2 Position Auctions

that the number of clicks received on position j is independent of the identity of the

bidder, and that it decreases the lower an ad is placed on the page, i.e. α1 > α2 >

. . . > αk > 0. In Section 6.3, we will relax this assumption and show that our analysis

remains qualitatively unaffected. In particular, we will assume that the click-through

rate of a given position can be factored into a position-specific click-through rate αj and

a bidder-specific factor βi which we refer to as a bidders’ relevance. The click-through

rate of bidder i assigned to position j is then determined by βiαj. For now, we assume

βi = 1 for all i ∈ N . The vector α = (α1, . . . , αk) is called the position vector. Every

click on an ad of advertiser i shown on position j gives i a revenue of vi > 0, the

valuation of i. vi is independent of the position j. The payoff of player i with valuation

vi who is assigned to position j and pays pj per click then becomes ωi = αj(vi − pj).

Let ω = (ω1, ω2, . . . , ωn) be the vector of individual payoffs. Each bidder has to submit

a bid bi ∈ Bi = [0,∞). Let B = B1 × B2 × . . . Bn be the set of bid profiles. We say

that two bids bi, bj are distinct if bi 6= bj. In the position auctions considered here, the

bidder with the jth highest bid is assigned to position j ∈ K. If a bidder submits a

bid bi > 0 that is not among the m highest bids, he is assigned to a dummy position

k > m respectively. We will denote by b(j) the bid of the player who is assigned to

position j. We further assume that by bidding bi = 0, a bidder signals that he will

not participate in the auction. He is not assigned to any real position and pays 0. For

matter of notational convenience, we say he is assigned to the dummy position −1. We

define αk = α−1 = 0 for all k > m. Let us define another dummy position m+, and let

us denote by m+ the set players that are not assigned to a real position anymore, i.e.

to a position k > m. Only one player can be assigned to each position j ∈ K, while

more than one player can be assigned to the dummy positions −1 and m+ respectively.

Formally, an allocation is an assignment of players to positions, s = (s1, s2, . . . , sn) such

that si 6= sl for every i, l ∈ K. si = s(i,b) = j denotes the position of player i given

the vector of bids submitted is b. Let A be the set of all allocations. Given the general

environment EP = {N,K, α, ω}, a position auction is defined by its payment scheme

and its tie-breaking rules for the case that there are non-distinct bids bi = bj.
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2 Position Auctions

2.3 Payment Schemes

Given the set of bid profiles B = B1 × B2 × . . . Bn, there exists a payment function

pj : B→ R+ for each position j ∈ K ∪ {−1,m+}. pj(b) denotes the payment per click

for position j given the bid profile b. Since a bidder who is not assigned to a real position,

as well as bidders who do not participate in the auction, pay zero, pm+ = p−1 = 0. This

holds for all position auctions considered in this thesis. Instead, the payment functions

pj(b) differ for all j ∈ K dependent on the auction format. In a generalized second-price

auction, let ∀ j ∈ K and ∀b ∈ B

pGSPj (b) = b(j+1). (2.1)

Every player assigned to a position in K pays the bid of the player assigned to the

position directly below him.

Lemma 1 Truth telling is not a dominant strategy in the generalized second-price auc-

tion.

Proof. Suppose there are three players and two positions. Let the vector of valuations

be v = (100, 90, 10) and the position vector be α = (100, 50). Given players two and

three bid truthfully, the profit of player one given he also submits his bid truthfully would

be α1 ·(v1−b2) = 100·(100−90) = 1000. By bidding slightly below the bid of player two,

say b1 = 89, the payoff of player one would be much higher, i.e. 50 · (100− 10) = 4500.

Therefore, bidding truthfully is not an equilibrium strategy. �

In contrast, in a Vickrey-Clarke-Groves (VCG) position auction, the payment per click

of player i assigned to position j depends not only on the bid of the player directly below

him, but on the bids of all players l assigned to a position s(l,b) > s(i,b) as follows:

Definition 1 Given the environment EP , then ∀ j ∈ K and ∀b ∈ B, the payment per

click of a player assigned to position j induced by the standard Vickrey-Clarke-Groves

mechanism is given by

pV CGj (b) =

∑m+1
k=j+1 b(k)(αk−1 − αk)

αj
. (2.2)

12



2 Position Auctions

Proposition 1 Truth-telling is a weakly dominant strategy under VCG.

Proof. In order to show that truth-telling is a dominant strategy, suppose there is

a mediator that announces he will choose an allocation s∗ such that the sum of the

reported utilities of the players i = 1, . . . , n will be maximized. Let the true valuation

of player i be vi and its reported value be bi. The mediator then announces to pay each

agent the sum of the utilities reported by the other players at the utility-maximizing

outcome, i.e.

bi · αs∗(i,b) +
∑
l 6=i

bl · αs∗(l,b).

Since every player i cares about

vi · αs∗(i,b) +
∑
l 6=i

bl · αs∗(l,b)

it is obviously a dominant strategy for every player to report bi = vi. In order to reduce

side payments, the mediator subtracts an amount that does not depend on the report

of player i and therefore does not bias incentives. He chooses an allocation s∗−i omitting

i’s report such that

s∗−i = arg max
s−i

∑
l 6=i

bl · αs−i(l,b).

The final payoff of player i then becomes

vi · αs∗(i,b) +
∑
l 6=i

bl · αs∗(l,b) −
∑
l 6=i

bl · αs∗−i(l,b). (2.3)

Rearranging the transfer payments in (2.3) yields (2.2). The net transfer every player i

assigned to position j ∈ K faces can be interpreted as the negative externality he imposes

on others. Every player l 6= i assigned to a position s(l,b) < s(i,b) is not affected by

the presence of player i, while every player l assigned to a position s(l,b) > s(i,b) would

arise by one position if player i was absent. �

Moreover, let us state some additional properties of the VCG payment scheme at this

point, since it is thematically consistent. We will refer to those in subsequent chapters.

The following Lemma and proof is due to (Ashlagi et al. [2008]):
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Lemma 2 Let pV CG be the VCG payment scheme. It holds that

1. pV CGj (b) ≤ b(j+1) for every j ∈ K.

2. pV CGj (b) ≥ pV CGj+1 (b) for every j = 1, . . . ,m − 1 and for every b ∈ B, where for

every j, equality holds if and only if b(j+1) = b(j+2) = . . . = b(m+1).

Proof. Since the VCG payment pV CGj (b) as defined in (2.2) is a convex combination

of the bids of players assigned to positions j + 1, j + 2 . . . ,m + 1, it never exceeds the

maximal element in the sequence, i.e. b(j+1). This proves the first part. In order to

prove the second part, note that if j = m, then for every b ∈ B it holds that

pV CGj (b) = b(j+1) ≥ 0 = pV CGj+1 (b).

For j < m, which implies that j + 1 ∈ K, and since b(j+1) ≥ b(j+2) it holds that

pV CGj (b) =
b(j+1)(αj − αj+1)

αj
+

∑m+1
k=j+2 b(k)(αk−1 − αk)

αj

≥
b(j+2)(αj − α(j+1))

αj
+

∑m+1
k=j+2 b(k)(αk−1 − αk)

αj
. (2.4)

Rearranging the right-hand-side of (2.4) yields

b(j+2) −
m∑

k=j+2

αk
αj

(b(k) − b(k+1)).

Since αj > αj+1, it holds that

pV CGj (b) ≥ b(j+2) −
m∑

k=j+2

αk
αj+1

(b(k) − b(k+1)) = pV CGj+1 (b). (2.5)

Therefore, pV CGj (b) = pV CGj+1 (b) if and only if b(j+1) = b(j+2) = . . . = b(m+1). Otherwise,

it holds that pV CGj (b) > pV CGj+1 (b). �

Finally, let us introduce an additional notational convention that we will use in subse-

quent chapters whenever it facilitates our work. Sometimes it may be more convenient

to describe the payment schemes indexed by players and not by positions. We therefore

denote

qi(b) = ps(b,i)(b)

14
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for every player i ∈ N . Accordingly, let

q(b) = (q1(b), q2(b), . . . , qn(b))

be the player payment scheme. The correspondence p → q is one-to-one. All assump-

tions about the position payment schemes can be transformed to analogous assumptions

about the player payment schemes.

2.4 Tie-breaking rules

The most commonly used tie-breaking rule in practice is the Rule of First-Arrival. If two

or more players submit equal bids, they are ordered according to the point in time their

bids were recorded at the search engine. The player who submitted first gets the highest

position among those players, the player who submitted second is assigned to the next

position and so on. The Rule of First-Arrival is typically modeled assuming that the

auctioneer uses a random priority rule. Formally, let Γ be the set of all permutations

γ = (γ1, γ2, . . . , γn) of the set of players N = {1, . . . , n}. The auctioneer chooses an

arbitrary permutation γ ∈ Γ with equal probability, but does not tell the players the

resulting priority rule before they submit their bids. If he tells the players in advance,

the tie-breaking rule is called a fixed priority rule. Given there are equal bids bi = bk,

player i has a higher priority than player k if and only if γi < γk. Every vector of bids

b ∈ B and a permutation γ ∈ Γ uniquely determine an allocation s. In what follows,

we will assume a fixed priority rule, and without loss of generality, let the permutation

applied be γ = (1, 2, . . . , n), the natural order of players.
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3 Analysis of Equilibria

3.1 Complete Information

The generalized second-price auction was modeled as a static one-shot game of complete

information e.g. by (Edelman, Ostrovsky, Schwarz [2007]) and (Varian [2007]).

Advertisers bidding on Google and Yahoo! can adjust their bids on specific keywords

repeatedly. This offers sufficient space for experimentation in order to learn everything

necessary to conceive other bidders’ primarily private values. Furthermore, since players

can adjust their bids at any point in time, stable bids in an infinitely repeated game must

be static best responses to each other since otherwise bidders would have an incentive

to change their bids.

In order to analyze equilibrium behavior in a static GSP auction with complete in-

formation, (Edelman, Ostrovsky, Schwarz [2007]) develop the concept of locally

envy-free equilibria, while (Varian [2007]) analyzes boundaries of equilibrium bids in

order to determine equilibrium properties. Both authors independently observe a strong

relationship between position auctions and two-sided matching models and use well-

known results from such assignment games in order to strengthen their findings: The

generalized second-price position auctions possesses multiple equilibria, while among the

set of these equilibria, the most beneficial equilibrium for the bidders and the worst for

the search engine is the one that generates the same allocation s and vector of payments

pV CG = (pV CG1 , pV CG2 , . . . , pV CGk ) as if the auctions had been designed according to the

rules of Vickrey-Clarke-Groves. Formally, we assume in this section that all bidders’

values are common knowledge, i.e. the vector v = (v1, . . . , vn) is known to all players
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3 Analysis of Equilibria

i ∈ N . Let the valuation of a player assigned to position j be denoted by v(j). Let the

payment of each agent assigned to position j ∈ K be defined according to (2.1), i.e.

pGSPj (b) = b(j+1), while pj = 0 for all j ∈ {m+,−1}. Ties will be broken according to

γ. Let GC,GSP = {EP ,v,p
GSP , γ} be a generalized second-price position auction under

complete information. In equilibrium, each agent should prefer his current position over

all other positions:

Definition 2 (Varian [2007]) A symmetric Nash equilibrium set of prices of the game

GC,GSP satisfies

αj(v(j) − pj) ≥ αk(v(j) − pk) ∀ j, k ∈ K, (3.1)

where pj = b(j+1).

In what follows, we will show an explicit characterization of equilibrium prices and

bids in a series of simple arguments following (Varian [2007]). We then show the

close relationship between position auctions and the assignment game first studied by

(Shapley, Shubik [1972]) applying the definition of locally envy-free equilibria and

implicitly prove that the two definitions yield the same outcome of equilibrium bids and

allocation.

Firstly, we will examine some properties that must hold in a symmetric Nash equilib-

rium.

Observation 1 A symmetric Nash equilibrium of GC,GSP is an efficient allocation.

Proof. Rearranging the inequalities in (3.1) gives

v(j)(αj − αk) ≥ αjpj − αkpk ∀ j, k. (3.2)

Now imagine two players assigned to positions j, k ∈ K. For the player in position j it

must hold that

v(j)(αj − αk) ≥ pjαj − pkαk

and for the player in position k

v(k)(αk − αj) ≥ pkαk − pjαj.
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Adding up these inequalities yields

(v(j) − v(k))(αj − αk) ≥ 0.

Hence, v(j) and α(j) must be ordered the same way and therefore v(j−1) ≥ v(j). Thus a

symmetric Nash equilibrium is an efficient allocation. �

Observation 2 In a symmetric Nash equilibrium of the game GC,GSP , the surplus of

each player is non-negative, i.e.

αj(v(j) − pj) ≥ 0.

Proof. All players assigned to a position j ∈ {m+,−1} are not assigned to a real

position and pay zero. Since αj = 0 for all j ∈ {m+,−1}, their profit will be zero.

For all players assigned to a position j ∈ K, we get from the inequalities defining a

symmetric Nash equilibrium,

αj(v(j) − pj) ≥ αm+1(v(j) − pm+1) = 0

since by definition αm+1 = 0. �

Observation 3 In a symmetric Nash equilibrium of the game GC,GSP , prices are mono-

tone, i.e. αj−1pj−1 ≥ αjpj for all j ∈ K ∪{m+,−1}. If v(j) > pj it holds that pj−1 > pj.

Proof. Rearranging (3.1) yields

pj−1αj−1 ≥ pjαj + v(j)(αj−1 − αj) ≥ pjαj.

Observe that

pj−1αj−1 ≥ pjαj + v(j)(αj−1 − αj) ≥ pjαj + pj(αj−1 − αj) = pjαj−1.

Now if v(j) > pj, the second inequality is strict and therefore pj−1 > pj. �

In order to show that a set of bids is a symmetric Nash equilibrium, it is sufficient to

show that a player cannot gain by moving one position up or down. If it is not profitable

for him to move either one slot up or down, then neither is it profitable for him to move

more than one position up or down.
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Observation 4 Given a set of bids that satisfies the inequalities in (3.1) for k = j + 1

and k = j − 1, then it satisfies these inequalities for all k ∈ K ∪ {m+,−1}.

Proof. Suppose the symmetric Nash equilibrium inequalities hold for positions j − 1

and j and for positions j and j + 1. It can be easily shown that it must hold for j − 1

and j + 1. From (3.2)—nobody wants to move down one position—we get

v(j−1)(αj−1 − αj) ≥ pj−1αj−1 − pjαj (3.3)

and

v(j)(αj − αj+1) ≥ pjαj − pj+1αj+1 (3.4)

respectively. Since values are monotone, i.e. v(j−1) ≥ v(j), we get from (3.4)

v(j−1)(αj − αj+1) ≥ pjαj − pj+1αj+1. (3.5)

Adding up (3.3) and (3.5) yields

v(j−1)(αj−1 − αj+1) ≥ pj−1αj−1 − pj+1αj+1,

i.e. nobody wants to move down more than one position. The other direction (nobody

wants to move up) works similarly. Consider the equation that states that the player in

position j does not want to move up to position j − 1,

αj(v(j) − pj) ≥ αj−1(v(j) − pj−1) (3.6)

and the equation stating that the player in position j + 1 does not want to move up to

position j

αj+1(v(j+1) − pj+1) ≥ αj(v(j+1) − pj). (3.7)

Note that (3.6) remains valid after replacing v(j) by v(j+1). Adding up the modified

equations (3.6’) and (3.7) yields

αj+1(v(j+1) − pj+1) ≥ αj−1(v(j+1) − pj−1). (3.8)

This concludes the proof. �
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With these observations in hand, we are able to explicitly characterize equilibrium

bids and prizes of the game GC,GSP . Recall that in a symmetric Nash equilibrium, a

player assigned to position j does not want to move down one position, i.e.

αj(v(j) − pj) ≥ αj+1(v(j) − pj+1)

as well as a player assigned to position j+ 1 does not want to move up one position, i.e.

αj+1(v(j+1) − pj+1) ≥ αj(v(j+1) − pj).

Putting these two inequalities together yields

v(j)(αj − αj+1) + pj+1αj+1 ≥ pjαj ≥ v(j+1)(αj − αj+1) + pj+1αj+1. (3.9)

Since pj = b(j+1), (3.9) can be rewritten as

v(j−1)(αj−1 − αj) + b(j+1)αj ≥ b(j)αj−1 ≥ v(j)(αj−1 − αj) + b(j+1)αj. (3.10)

Let µj =
αj

αj−1
< 1. Equation (3.10) then becomes

v(j−1)(1− µj) + b(j+1)µj ≥ b(j) ≥ v(j)(1− µj) + b(j+1)µj. (3.11)

Thus, the bid b(j) of a player assigned to position j is bounded above and below by a

convex combination of the bid of the player below him and, on the upper bound, of the

value of the player assigned to the position above him or, at the lower bound, of his

own value. Now any recursively chosen sequence of bids that satisfies the equivalent

inequalities (3.9)-(3.11) is a symmetric pure strategy Nash equilibrium of the game

GC,GSP . If we write down the solutions to these recursions of the upper and lower

bounds,

bU(j) =
v(j−1)(αj−1 − αj) + b(j+1)αj

αj−1

,

bL(j) =
v(j)(αj−1 − αj) + b(j+1)αj

αj−1

,

we get, starting with the fact that there are only m positions and αm+1 = 0,

bU(j) =

∑m+1
k=j v(k−1)(αk−1 − αk)

αj−1

, (3.12)
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bL(j) =

∑m+1
k=j v(k)(αk−1 − αk)

αj−1

. (3.13)

Now notice that since

pGSPj (bL) = bL(j+1) =

∑m+1
k=j+1 v(k)(αk−1 − αk)

αj
,

the payment of each player assigned to position j at the lower bound symmetric Nash

equilibrium of the generalized second-price auction coincides with the payment in the

corresponding game GV CG = {EP ,v,p
V CG, γ}, i.e. a position auction with the same

environment E and tie-breaking rule γ, but payment rule designed according to the

rules of Vickrey-Clarke-Groves. Since values and prices are monotone in the generalized

second-price auction as well as under VCG, the allocation s is also the same and therefore

the outcome of the lower bound symmetric Nash equilibrium of GGSP is equivalent to the

equilibrium outcome in GV CG. The revenue for the search engine becomes
∑m+1

j=1 bGSP(j) .

Since bL(j) are the lowest symmetric Nash equilibrium bids, the equilibrium in which all

bidders bid at the lower bound is the one that generates the lowest profit among all

symmetric Nash equilibria for the search engine, and vice versa, this equilibrium is the

most profitable for the bidders. Given this scenario, the revenue for the search engine

becomes
∑m+1

j=1 bGSP,L(j) =
∑m

j=1 p
V CG
j . �

Another interesting line of argumentation is to point out the strong relationship be-

tween position auctions and the assignment game first studied by (Shapley, Shubik

[1972]). For that purpose, we will present another equilibrium definition in the game

GC,GSP introduced by (Edelman, Ostrovsky, Schwarz [2007]):

Definition 3 A vector of bids b in the game GC,GSP is a locally envy-free equilibrium if

a player cannot improve his payoff by exchanging bids with the player ranked one position

above him. More formally, in a locally envy-free equilibrium, for every player i ∈ N , we

have αs(b,i)(vi − ps(b,i)) ≥ αs(b,i)−1(vi − ps(b,i)−1).

For the matter of notational convenience, it may be more useful to define equilibrium

requirements indexed by positions. Then, for every position j ≤ min{N,K}, we have
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that in a locally envy-free equilibrium, αj(v(j) − pj) ≥ αj−1(v(j) − pj−1). Note that this

requirement is analogous to the requirement stated in the definition above.

Observation 5 Every locally envy-free equilibrium is a symmetric Nash equilibrium.

Proof. By definition, in any locally envy-free equilibrium, no player can gain from

being rematched with the player assigned to the position directly above him. He also

cannot profitably rematch with a player assigned to a position below him since this would

contradict the assumption of being in equilibrium: If such a profitable rematching ex-

isted, he could slightly underbid the respective player and get his position and payment.

It is also not profitable for a player in a locally envy-free equilibrium to rematch with

a player assigned to a position k < j − 1. This follows immediately from second part

of the proof of Observation 4. Therefore, given the restrictions of a locally envy-free

equilibrium, for any player assigned to a position j ∈ K ∪ {m+,−1} it holds that

αj(v(j) − pj) ≥ αk(v(j) − pk) ∀ j, k ∈ K ∪ {m+,−1}.

But this is exactly the definition of a symmetric Nash equilibrium of the game GC,GSP .

�

In order to see the strong relationship between the position auction problem and the

assignment game studied by (Shapley, Shubik [1972]), we may view each position as

an agent who is looking for the most profitable match with an advertiser. Furthermore,

only one advertiser can be matched with a position respectively. The utility of an

advertiser i who is matched with position j is given by ui(j) = αjvi. The advertiser

pays pj. His payoff becomes ωi(j) = αjvi−pj. Let us denote the assignment game by A.

The assignment problem is to solve for the matching of advertisers with positions that

maximizes, in our case, advertisers joint payoff. It can be shown that the problem can

be solved without the need of a central authority, which would just assign the position

with the highest click-through rate to the advertiser with the highest valuation, the

position with the second highest click-through rate to the advertiser with the second

highest valuation and so on, by means of a price mechanism, such that

ui(j)− pj ≥ ui(k)− pk ∀ j, k. (3.14)
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Thus, given the prices pj for all positions j ∈ K , advertiser i would prefer the position

he holds to any other position. Now since ui(j) = αjvi and pj = αjb(j+1), (3.14) becomes

αj(v(j) − pj) ≥ αk(v(j) − pk)∀ j, k.

However, this is exactly the definition of the symmetric Nash equilibrium inequalities

of the game GC,GSP . Therefore, any symmetric Nash equilibrium of GC,GSP is just a

competitive equilibrium of the corresponding assignment game A.

We can also show the analogy explicitly:

Lemma 3 (Ashlagi et al. [2008]) The outcome of any locally envy-free equilibrium

of the game GC,GSP is a stable assignment.

Proof. This follows immediately from the proof of Observation (5). Since all players

prefer the position they hold to any other position, the assignment must be stable. �

Lemma 4 (Ashlagi et al. [2008]) If the number of bidders is greater than the number

of available positions, then any stable assignment is an outcome of a locally envy-free

equilibrium of the game GC,GSP .

Proof. By a result of (Shapley, Shubik [1972]), a stable assignment must be efficient

and assortative. Let the corresponding prices in the stable assignment be denoted by

pAj . It is easy to construct an outcome of the game GC,GSP that corresponds to the

outcome of a stable assignment of the corresponding assignment game A. Therefore, let

b(1) = max vi and b(j) = pAj−1 ∀ j > 1. Since pGSPj = b(j+1), the payments of the position

auction correspond to those of the stable assignment. Furthermore, since the stable

assignment is efficient, it must hold that pj > pj+1 for all j. Therefore it holds that

b(j) > b(j+1). Hence, the allocation s is also the same in the original stable assignment as

well as in the corresponding position auction. Now we only need to show that the vector

of bids b constitutes a locally envy-free equilibrium. Since no player can profitably move

to another position in the originally stable assignment, and being matched to another

position in game GC,GSP yields exactly the same profit for the respective player as if he
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would have been assigned to the respective position in the originally stable assignment

of the game A, it cannot be profitable for him in GC,GSP . �

Given Lemma 3 and 4, we find another way to prove that the VCG equivalent outcome

of GC,GSP is the best outcome for the bidders and the worst for the search engine by

finding an analogous result for the assignment game A. Recall the vector of payments

pV CG = (pV CG1 , pV CG2 , . . . , pV CGk ) such that

pV CGj (b) =

∑m+1
k=j+1 b(k)(αk−1 − αk)

αj
∀ j ∈ K ∩ ∀b ∈ B

We already proved that this vector of payments constitutes a symmetric Nash equilib-

rium of the game GC,GSP . Now consider any stable assignment of the game A. It must

hold that pm ≥ v(m+1) since otherwise the bidder assigned to position m+ 1 would find

it profitable to match with position m. But it also holds that pV CGm = b(m+1) and since

VCG is truthful, pV CGm = b(m+1) = v(m+1). Hence in the buyer optimal stable assignment,

pm = pV CGm . Next, in any stable assignment, it must hold that

(αm−1 − αm)pm−1 + (pm−1 − pm)αm = αm−1pm−1 − αmpm ≥ v(m)(αm−1 − αm)

since otherwise the player assigned to position m would find it profitable to move up to

position m− 1. Hence we get

pm−1 ≥
v(m)(αm−1 − αm) + αmpm

αm−1

≥
v(m)(αm−1 − αm) + αmv(m+1)

αm−1

= pV CGm−1 .

Therefore, in the buyer-optimal stable assignment, pm−1 = pV CGm−1 . Now if we proceed by

induction, we get pj = pV CGj for any j ∈ K in the buyer optimal stable assignment, and

hence, the profit for the search engine aggregates to
∑m

j=1 p
V CG
j . Obviously, this is the

worst symmetric Nash equilibrium from the perspective of the search engine. �

3.2 Incomplete Information

(Lahaie [2006]) analyzed position auctions under complete and incomplete information.

The findings in the complete information case are similar to those already presented.
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For the case of incomplete information, explicit formulas of equilibrium bids under al-

ternating first-price payment rules are derived. This works out to be very similar to the

first-price equilibrium in the single-item model, see for example (Krishna [2002]), with

the difference that equilibrium bids depend on the density of the second highest value

among all N bidders in the single-item case, while it depends on a weighted combination

of the densities for the second, third, etc. highest values in a position auction. Unfortu-

nately, as a result from attempting to derive explicit equilibrium bids given a second-price

payment rule, (Lahaie [2006]) states that “the resulting differential equations for this

case do not have a neat analytical solution.” Nevertheless, (Ashlagi et al. [2008]) as

well as (Edelman, Ostrovsky, Schwarz [2007]) find an ex post equilibrium of the

generalized second-price auction, though both slightly change the model in order to do

so. The former use a mediator to implement the equilibrium, while the latter develop

an analogue of the standard English auction, the so-called generalized English auction

in order to answer the question of how bidders converge to the equilibrium found under

complete information. This ex post equilibrium is exactly the bidder optimal one in

which players get VCG payoffs. Let us briefly present the ideas of (Edelman, Ostro-

vsky, Schwarz [2007]) before we introduce the model of (Ashlagi et al. [2008]) in

more detail since, it will find extensive use in subsequent chapters.

So, how do bidders converge to a situation in which nobody has an incentive to change

bids anymore? Actually, it can be shown that there are simple strategies that do the job:

each bidder starts bidding at zero and increases his bid as long as his payoff increases as

well. In order to model this procedure, imagine a clock showing the current price that

continuously increases over time. The bid of a player is then determined by the price

the clock shows at the moment he drops out. The game is over when all bidders but

one have dropped out, and the price each bidder pays is equal to the price at which the

bidder directly before him dropped out. The players are assigned positions according

to the point in time they dropped out, with the last remaining player being assigned

to the top position. Bidders’ values need not be a common value. The resulting game

of incomplete information has a unique perfect Bayesian equilibrium, which, as already
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mentioned, coincides with the VCG equivalent equilibrium of GC,GSP . The equilibrium

is ex post, i.e. the equilibrium strategies of the players are best responses to other

bidders’ strategies independent of the values actually realized.

In order to model position auctions under incomplete information, some notational

preliminaries are necessary. In what follows, we will model position auctions as pre-

Bayesian games following (Ashlagi et al. [2008]). Pre-Bayesian games are games

of incomplete information where the probability measure over the profiles of types of

player is not common knowledge. (This is in contrast to the model used by (Edelman,

Ostrovsky, Schwarz [2007]). The common solution concept of pre-Bayesian games

is the search for ex post equilibria. Formally, let there be a fixed number of players

N = {1, . . . , n}. Each players’ set of actions is given by bi ∈ Bi. For each game, there

is a set of outcomes O. Every action profile, that is any vector of actions b ∈ B =

B1 × B2 × . . . × Bn yields an outcome a ∈ O. The function that maps action profiles

to outcomes is denoted by ψ : B → O. In general, there is a set of states θ ∈ Θ. In

pre-Bayesian games, the payoff of any player i depends on the realized state θ ∈ Θ as

well as on the outcome a ∈ O, i.e. ωi(θ, a). Since we deal with private information only,

we assume Θ = V = V1 × . . . × Vn. To keep things simple, we will assume that the

payoff will only depend on the type vi and not on the vector of types v = (v1, . . . , vn).

Therefore, a pre-Bayesian game is given by GB = (N,V,O, (ωi)i∈N ,B, ψ). Finally, let

the utility of player i, ui : Vi ×B→ R be defined as:

ui(vi,b) = ωi(vi, ψ(b)).

Given the general definition of pre-Bayesian games, we will see that position auctions

fit very well into the concept of pre-Bayesian games, a fact that leaves us with a model

of position auctions that deals with incomplete information: Let Vi = [0,∞) be the set

of types of i and let V = V1 × V2 × . . . × Vn be the set of states. Let Bi = [0,∞) be

the set of actions of i and B = B1 × B2 × . . . × Bn be the set of action profiles. Let S

be the set of allocations. An outcome of a position auction is an allocation s, i.e. an

assignment of players to positions, and a vector of players’ payments q. (In order to

avoid entanglement, recall that the player payment scheme can be written analogously
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indexed by positions, and the one-to-one correspondence p→ q of the different payment

schemes. We will use either of both notations dependent on which is more convenient

respectively.) Let O = S × Rn
+ be the set of outcomes. The function ψ : B→ O that

maps actions profiles to outcomes becomes

ψ(b) = (s(b),q(b)).

The payoff for each bidder, ωi : Vi ×O→ R is then defined as

ωi(vi, (s,q)) = ωi(vi, (s1, . . . , sn, q1, . . . , qn)) = αsi
(vi − qi).

The utility of player i, ui : Vi ×B→ R becomes

ui(vi,b) = αs(b,i)(vi − qi(b)) = αs(b,i)(vi − ps(b,i)).

Since there is in fact no difference in the definition of players’ payoffs to the def-

inition in the very basic case introduced in Chapter 2, let the generalized second-

price auction under incomplete information that we are going to analyze be given by

GB,GSP = {EP ,V,O,B, ψ, γ}, where ψ(b) = (s(b),qGSP (b)) . In GB, the strategy of

player i is a function fi that assigns an action bi = f(vi) ∈ Bi to every possible type

vi ∈ Vi. Now we are able to define an ex post equilibrium:

Definition 4 An ex post equilibrium in GB is a profile of strategies f = (f1, . . . , fn)

such that for every player i ∈ N and for every v ∈ V it holds that

ui(vi, f(v)) ≥ ui(vi, bi, f−i(v−i)), ∀ bi ∈ Bi

where f(v) = (f1(v1), . . . , fn(vn)) and f−i(v−i) is the vector of players strategies without

i. fi is a weakly dominant strategy for i if the above inequalities hold for all f−i(v−i).

The reader may excuse the elaborate effort in notational preliminaries, but it actually

gives us a clean and comprehensive structure of position auctions and the instruments

to introduce and clearly point out the role of mediators in the given framework. With

these observations at hand, we are able to turn towards the next chapter, in which we

will introduce some theory on the concept of mediators and finally present a mediation

device which implements the VCG equivalent outcome in a generalized second-price

auction under incomplete information.
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So far, we have learned that in position auctions bidders can profit if they are able to

coordinate to the VCG equivalent equilibrium among the multiple equilibria that exist.

In this chapter we address the question as to how such a coordination can be facilitated.

We show that this is possible by the use of a mediation service or mediation device. For

that purpose, we introduce the concept of a mediator and apply it to the context of

position auctions. A mediator is a reliable entity that can play on behalf of the bidders,

but cannot enforce behavior. Any player is free to choose either to give the mediator

the right to play on his behalf or to participate in the respective game directly without

the help of the mediator.

However, players must not only coordinate to the most profitable among multiple

equilibria. It can be shown that, with the help of a mediator, bidders can even reach

outcomes, in which the payoffs for the agents are beyond the convex hull of Nash equilib-

rium payoffs. Let us illustrate the power of such a mediator by a simple example which

goes back to (Monderer, Tennenholtz [2006]). Therefore, consider the classical

prisoner’s dilemma game:

Cooperate Defect

Cooperate 4,4 0,6

Defect 6,0 1,1

It is a well-known fact that in the unique Nash equilibrium of the game both agents

choose to defect, since this is a dominant strategy for both. In equilibrium, each player

ends up with a payoff of 1. But this equilibrium is inefficient. If they could coordinate
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to the outcome (C,C), i.e. both choose to cooperate, each player would get a payoff

of 4. Now consider a mediator that comes into play and announces that he will choose

‘Cooperate’ on behalf of the players if and only if both players give him the right to play

on their behalf. If only one player gives him the right to play, he will choose ‘Defect’ on

his behalf. The new game generated by the mediator is in the form:

Mediator Cooperate Defect

Mediator 4,4 6,0 1,1

Cooperate 0,6 4,4 0,6

Defect 1,1 6,0 1,1

In this game, it is a weakly dominant strategy for each player to use the mediators

service and hence, both players end up with a payoff of 4. In fact, the mediator chooses

‘Cooperate’ on behalf of the players and therefore successfully implements the outcome

(C,C) of the original game, which is beyond the convex hull of Nash equilibrium payoffs.

In Chapter 5, we will develop a collusive mediator that coordinates the bidders in the

position auction game GC,GSP to a collusive outcome that is beyond the convex hull of

Nash equilibrium payoffs.

The critical point is the mediator’s reliability. Due to his reliability, the mediator is

able to coordinate players on outcomes of a game in which, originally, they would have

had an individual incentive to deviate given that the other players acting accordingly,

and therefore such an outcome cannot be realized without the use of a mediator. The

underlying simple idea is that the mediator announces, and even more importantly,

actually implements the advantageous outcome if and only if all players give him the

right to play. If not all players give him the right to play, he acts on behalf of the subset

of players that give him the right to play in a way that a less profitable outcome for

all players is obtained. In a position auction, this is very easily done by punishing the

players who do not give him the right to play by using very high bids by the players

that use his service. But this is not a very sophisticated choice since it might discourage

players to use the service of the mediator since they may end up with negative payoffs.
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In equilibrium, they would not end up with a negative payoff, but if players believe

that errors can occur with positive probability, they might be distracted. At least in

practice this seems to us a great obstacle. Therefore we will focus on individually rational

mediators. An individually rational mediator can guarantee each player who uses his

service and reports his type truthfully a nonnegative payoff—no matter how the players

who do not use the service of the mediator play and independent of the reports sent to

the mediator by the other players who decided to give him the right to play on their

behalf—even if they report false values.

One may argue that the mediator’s reliability is a critical point itself, i.e. how his

reliability is enforced. (Ashlagi et al. [2008]) argue that the mediator simply maxi-

mizes his own profit and implicitly assume that this is highly correlated with the goal

of guaranteeing high utility to rational players. However, note that a mediator may be

just a software protocol that players can observe in advance. This seems to be a more

convincing argument to us.

By his existence, the mediator creates a new game, the mediated game Gm, but

without changing the fundamental rules of the original game G. Given the new game

Gm, it is ideally an ex post equilibrium for all players to give the mediator the right to

play and, in a game of incomplete information, report their types truthfully, while he

implements the more profitable outcome for the players in the original game G.

In order to reach a desired outcome for the participants of a certain game, one might

as well chose a mechanism design approach, i.e. change the rules of the game such that

the desired outcome will be in equilibrium. However, this might be problematic since

it would require the modification of existing standards. In face of the vast amounts

of money that Google and Yahoo! earn with online advertising, this would impose a

considerable economic risk. Therefore, the use of a mediator has to be a superior choice

in many settings.

We will now introduce the concept of a mediator more formally and present some

advanced theory. We will then present a mediator that implements the VCG equivalent

outcome in a generalized second-price auction under incomplete information.
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4.1 Model

When introducing the concept of a mediator, we need to distinguish between games of

complete and incomplete information, i.e. pre-Bayesian games in our case. In a game

of complete information, the mediator simply asks for the “right to play” on behalf of

the players and performs actions b = (bS)S⊆N on behalf of the subset of players S that

give him the right to play. In a pre-Bayesian game, the mediator does not know the

valuations of the players and needs to be informed by the players about their types.

Let us define a mediator for pre-Bayesian games following (Ashlagi et al. [2008]) as

follows:

Definition 5 Let GB = (N,V,O, (ωi)i∈N ,B, ψ) be a pre-Bayesian game. A mediator

for GB is a vector m = (ms)S⊆N , where ms : VS → BS.

Let the set of players who give the mediator the right to play be S. Given the members

of S send the mediator their profile of types vS = (vi)i∈S ∈ VS, the mediator performs

actions mS(vS) ∈ BS on their behalf. The set of actions of any player i in the new

game created by the existence of the mediator therefore dilates to Bm
i = Bi∪Vi. Since a

player can either send a message of his type to the mediator or participate in the game

directly, we assume that Bi ∩ Vi = ∅. Choosing bmi = bi ∈ Bi means that i is not using

the service of the mediator, while choosing bmi = vi ∈ Vi means that the player reports

the type vi to the mediator and at the same time grants the mediator the permission

to play on his behalf. Let bm ∈ Bm. We denote by N(bm) = {i ∈ N : bmi ∈ Vi} the

set of players that use the service of the mediator. Let −N(bm) = N\N(bm). By the

existence of a mediator we obtain a new function that maps actions to outcomes. Let

us denote the new function by ψm : Bm → O. It is defined as follows:

ψm(bm) = ψ(mN(bm)(b
m
N(bm)),b

m
−N(bm))

The mediated game is therefore given by Gm = (N,V,O, (ωi)i∈N ,B
m, ψm). Let the

utility of player i be denoted by um
i . Note that the mediated game differs from the

original game only in the set of actions of players and the function that maps actions to
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outcomes. All other components remain unaltered. Now we are able to define a mediated

equilibrium, i.e. an equilibrium in the mediated game as follows:

Definition 6 (Ashlagi et al. [2008]) Let GB be a pre-Bayesian game, and let ϕ :

V→ O be an outcome function. We say that ϕ is a mediated equilibrium in GB if there

exists a mediator for GB, m, and an ex post equilibrium g = (g1, . . . , gn) in Gm, such

that gi(vi) ∈ Vi for every i ∈ N and for every vi ∈ Vi, and it holds that

ϕ(v) = ψ(mN(g(v))) ∀v ∈ V.

Let us call the strategy of player i in the mediated game, which is, give the mediator

the right to play and report the type truthfully, the T− strategy. Accordingly, let us

call the strategy profile in which all players report truthfully the T− strategy profile.

Let ϕm : V→ O denote the outcome function generated by the mediator when every

player is using the T− strategy, i.e.

ϕm(v) = ψ(mN(v)) ∀v ∈ V.

We say that the mediator truthfully implements ϕm in GB if the T-strategy profile is an

ex post equilibrium in Gm, that is gi(vi) = vi for every player i ∈ N . Finally, note that

the well-known revelation principle that can be applied, again following (Ashlagi et

al. [2008]):

Observation 6 (Ashlagi et al. [2008]) Let GB be a pre-Bayesian game, and let

ϕ : V→ O be an outcome function. ϕ is a mediated equilibrium if and only if there

exists a mediator m that implements ϕ by truthful mediation.

Now let us apply these definitions to the context of position auctions. Observe

that our meanwhile familiar generalized second-price auction is a pre-Bayesian game

GB,GSP = {EP ,V,O,B, ψ, γ} with ψ(b) = (s(b),qGSP (b)). Now each bidder can either

participate in the auction directly, i.e. submit a bid bi ∈ Bi, or report a type v̂i to the

mediator, which must not necessarily be his true type vi. The action set of each player

is therefore Bi ∪ Vi. If S = N(bm) is the set of players that send a type to the mediator
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and therefore give him the right to play, the mediator bids mS(v̂S) on their behalf. With

these observations at hand, let us define an ex post equilibrium of the mediated game

GB,GSP,m.

Definition 7 (Ashlagi et al. [2008]) The T−strategy profile is an ex post equilib-

rium in the mediated game GB,GSP,m if for every player i and type vi, and for every

vector of types of the other players, v−i, the following two conditions hold:

1. Any player i is not better off when he gives the mediator the right to play and

reports a false type. That is, for every v̂i ∈ Vi

ui(vi,mN(vi,v−i)) ≥ ui(vi,mN(v̂i,v−i)).

2. Any player i is not better off when he bids directly. That is, for every bi ∈ Bi,

ui(vi,mN(vi,v−i)) ≥ ui(vi, bi,mN\{i}(v−i)).

In any ex post equilibrium in which players report truthfully, the mediator implements

an outcome function in the original game GB,GSP . Let us denote this outcome function

by ϕm : V→ O, which is defined as follows:

ϕm(v) = ψ(mN(v)) = (s(mN(v)), q(mN(v)))

Finally, recall that we are searching for a mediator that can guarantee each player

who decides to use his service and reports his type truthfully, a nonnegative payoff—

independent of whatever action profile is chosen by the other players. Formally, let us

define an individually rational mediator as follows:

Definition 8 A mediator m in any pre-Bayesian game GB is said to be individually

rational if it holds that for every S ⊆ N and every player i ∈ S, the level of utility is

nonnegative, i.e.

ui(vi,mS(vS,b−S)) ≥ 0 ∀ b−S ∈ B−S and ∀ vS ∈ VS.

Prepared with these theoretical preliminaries, we are finally able to construct a mediator

that will implement the VCG equivalent outcome in a generalized second-price auction

under incomplete information.

33



4 Mediators in Position Auctions

4.2 A Mediator for the Generalized Second-Price

Auction

We need to find a mediator such that it is an ex post equilibrium in the mediated game

to report valuations truthfully to the mediator for every player i ∈ N . This is due to

the revelation principle as we have already stated in Observation 6. The mediator then

implements the same allocation and the same vector of payments for every player as if

the auction were designed according to the rules of VCG. Let us denote this outcome

function by ϕV CG : V→ O and let it be defined as follows:

ϕV CG(v) = (s(v),qV CG(v)).

Formally, let us define a mediator that implements the VCG outcome function in GB,GSP

as follows:

Definition 9 Let m be a mediator for GB,GSP . We say that m implements the VCG

outcome function in GB,GSP , i.e. ϕV CG, if the T− strategy profile is an ex post equilib-

rium in the mediated game GB,GSP,m, and it holds that ϕm = ϕV CG.

Let us now present such an individually rational mediator in more detail. The mediator

and the proofs in this chapter are once again due to (Ashlagi et al. [2008]). Finally,

the following mediator implements ϕV CG in GB,GSP :

Proposition 2 The VCG Mediator.

(a) For every v ∈ V let mN(v) = b(v), where b(v) defined as follows:

– bi(v) = pV CGs(v,i)−1(v) for every player i such that 2 ≤ s(v, i) ≤ m+ 1.

– bi(v) = bi(v)
1+ρ

for every player i such that s(v, i) > m + 1 and for some

arbitrary but fixed ρ > 0.

– bi(v) = ε + pV CG1 (v) for the player i such that s(v, i) = 1 and for some

arbitrary but fixed ε > 0.
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(b) For every strict subset S ⊂ N, mS(vS) = vS for every vS ∈ VS.

Proof. In order to prove that the VCG mediator effectively implements ϕV CG, we have

to show that the resulting allocation s is consistent with the vector of valuations v, the

resulting vector of payments is equivalent to the vector of payments that would occur

under VCG, and that it is an ex post equilibrium for every player to give the mediator

the right to play and report his type truthfully.

First, assume every player is using the T− strategy. Let us once again denote by v(i)

the ith highest among all valuations. Assume that the vector of valuations is generic,

there are no two valuations that are equal: v(1) > . . . > v(m) > . . . > v(n). Therefore, in a

VCG position auction, a player with the ith highest valuation will be assigned to the ith

highest position and pays pV CGi . Note that for all players assigned to a position k > m it

holds that pV CGi = 0 since they are not assigned to a real position and therefore do not

have to pay anything. Now if the players report their types truthfully to the mediator,

he submits the vector of bids b(v) = (b(1)(v), . . . , b(n)(v)) to the generalized second-price

auction, where

b(v) = (ε+ pV CG1 (v), pV CG1 (v), pV CG2 (v), . . . , pV CGm (v),
pV CGm (v)

1 + ρ
, . . . ,

pV CGm (v)

1 + ρ
).

From Lemma 2, we know that, since v(1) > . . . > v(m) > . . . > v(n), p
V CG
1 (v) >

pV CG2 (v) > . . . > pV CGm (v). Hence, it holds that b(1)(v) > b(2)(v) > . . . > b(m+1)(v) >

b(i)(v) for every i > m+ 1. Therefore, the vector of bids b(v) submitted to the general-

ized second-price auction generates the same allocation s as the vector v submitted to

the VCG position auction. Furthermore, since in the generalized second-price auction,

pGSPj (b) = b(j+1), it holds that every player assigned to a position i ∈ K pays pV CGi (v).

Hence, ϕm(v) = ϕV CG(v).

However, we have to prove that this result remains true when there are ties in the

vector v. We have to show that ϕm(v) = ϕV CG(v) for an arbitrary vector of valuations

v ∈ V. The proof in this case is a bit more involving. Nevertheless, let us start with

showing that s(b(v)) = s(v) for every vector of valuations v ∈ V. Therefore, we consider

a pair of players i 6= l. We have to show that whenever 1 ≤ s(v, i) < s(v, l) ≤ m + 1,

s(b(v), i) < s(b(v), l). Consider the following three cases:
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1. s(v, i) = 1.

Therefore, the bid submitted by the mediator on behalf of player i is bi(v) =

ε+ pV CG1 (v). But for player l, it must hold that bl(v) ≤ maxnk=1 p
V CG
k (v). Hence,

bi(v) > bl(v) and thus s(b(v), i) < s(b(v), l).

2. s(v, i) > 1, s(v, l) > m+ 1.

The bid submitted by the mediator on behalf of player l is therefore bl(v) =

pV CG
m (v)
1+ρ

< pV CGm (v). On the contrary, player i is assigned to a real slot and by

the second part of Lemma 2, it must hold that bi(v) ≥ pV CGm (v). Therefore,

bl(v) < bi(v) and thus s(b(v), i) < s(b(v), l).

3. s(v, i) > 1 and s(v, l) ≤ m+ 1. Consider two different cases:

– vi = vl. Since we assume a fixed priority rule and the permutation applied

is by assumption the natural order of players γ, i has a higher priority than

l, and therefore s(v, i) < s(v, l). Hence, by the second part of Lemma 2,

pV CGs(v,i)−1(v) ≥ pV CGs(v,l)−1(v). Thus, bi(v) ≥ bl(v) and hence it must hold that

s(b(v), i) < s(b(v), l).

– vi > vl. Once again, from the second part of Lemma 2, we know that

pV CGs(v,i)−1(v) > pV CGs(v,i)(v). The inequality is strict since bs(v,i) = vi > bs(v,l) =

vl. Now since s(v, i) < s(v, l) − 1, we know that pV CGs(v,i)(v) ≥ pV CGs(v,l)−1(v).

Thus pV CGs(v,i)−1(v) ≥ pV CGs(v,l)−1(v) and therefore bi(v) > bl(v). Consequently,

s(b(v), i) < s(b(v), l).

Thus we showed that s(b(v)) = s(v) for every v ∈ V. Now, according to the rules

of the generalized second-price auction, for every player i who is assigned to a position

s(v, i) ∈ K, it holds that ps(b(v),i)(b(v)) = b(j+1) = pV CGs(v,i)(v). All players who are

assigned to a dummy position j ≥ m + 1 and therefore do not receive a real spot pay

zero. Hence, qi(b(v)) = qV CGi (v) for every player i ∈ N . Thus, q(b(v)) = qV CG(v) for

all v ∈ V and consequently, ϕm = ϕV CG.
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Finally, we have to show that the T− strategy profile is an ex post equilibrium in

GB,GSP,m. Let v ∈ V be an arbitrary vector of valuations and assume that every player

but i uses the T− strategy. Obviously, it is not beneficial for i to report a false value to

the mediator since in a VCG position auction it is a weakly dominant strategy for every

player to report his valuation truthfully as we have already shown in Lemma 1. Now

the only strategy that remains to player i beside reporting truthfully to the mediator is

to participate in the auction directly. Therefore, let the vector of valuations reported to

the mediator by the other players be denoted by v−i, and let bi be the bid of player i.

Suppose that, if player i had reported truthfully to the mediator, he would have been

assigned to position k = s(v, i). Since ϕm = ϕV CG, it holds that s(b(v), i) = k. Now

consider player i who is assigned to a position j = s((v−i, bi), i) if he deviates and bids

bi. If j = k, his profit will not be affected, since his payment does not depend on his own

bid, and therefore, the deviation is not profitable. Now if j 6∈ K, his profit will be zero,

and therefore it is not profitable for i. Finally, assume that j ∈ K. Recall that if player i

does not give the mediator the right to play, the mediator bids mN\{i}(v) = v−i on behalf

of the players N\{i}. Therefore, the vector submitted to the generalized-second-price

auction becomes b̃ = (v−i, bi). It holds that

αk(vi − pk(b(v))) = αk(vi − pV CGk (v)) ≥

αj(vi − pV CGj (b̃)) ≥ αj(vi − b̃(j+1)).

The first inequality is due to the truthfulness of VCG, whereas the second inequality

follows from the first part of Lemma 2. But b̃(j+1) is exactly the payment that player i

has to make in the position auction if he deviates, and therefore it holds that

αk(vi − pk(b(v))) ≥ αj(vi − pj(b̃)).

Thus, participating in the auction directly is not a profitable strategy for player i. This

concludes the proof. �

Observation 7 The VCG mediator is individually rational.
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Proof. If all players use the T− strategy, the outcome in the generalized second-

price auction is exactly the same outcome as generated in a VCG position auction with

the vector of valuations v. From Lemma 2 we know that for any position j ∈ K,

pV CGj (v) ≤ b(j+1), and therefore for every player i with s(v, i) ∈ K it holds that

pV CGs(v,i)(v) ≤ b(s(v,i)+1) = v(s(v,i)+1) ≤ vi.

All players who are not assigned to a real slot pay zero anyway and thus cannot end up

with a negative payoff. If only a subset of players use the service of the mediator, the

mediator bids mS(v) = vS on behalf of those players, and by the rules of the generalized

second-price auction, none of those players will pay more than his or her value. �
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Second-Price Auction

But is there a possibility for the bidders to reach an even more profitable outcome

than VCG? Can they do so by using a mediator? Do other forms of cartel exist that

exploit the search engine? Again, the information structure is crucial in order to answer

these questions. In the introductory example on mediators, we presented a mediator

that coordinated players in a game of complete information on the collusive outcome

which was beyond the convex hull of Nash equilibrium payoffs. But is this also possible

in a generalized second-price auction? If so, does the result hold under incomplete

information? These questions will be subject of the forthcoming sections. We will present

a mediator that does the job under complete information. In the latter case, bidders

can effectively act as a single agent and maximize their joint payoff. However, under

incomplete information, it is impossible to implement any kind of collusive outcome by

means of a mediator. This is due to the fact that every anonymous truth-revealing

position auction is necessarily a Vickrey-Clarke-Groves position auction. Furthermore,

we will give a short review on a well-studied form of cartel in single-item auctions, so-

called pre-auction knockouts, and show that such a cartel does not work for GSP. Finally,

we will investigate how the situation changes if we allow for repeated play.
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5.1 A Collusive Mediator

With complete information, bidders can effectively act as a single agent and maximize

their joint payoff. All the search engine can do in response to colluding bidders is to set

an optimal reserve price. Should this be the case, the mechanism design problem would

be reduced to simple textbook monopoly pricing. We will not model the task of finding

an optimal reserve price for the search engine, but we want to show how bidders can

easily exploit the search engine by the use of a mediator. Recall that under complete

information, all the mediator can do is to collect the right to play on behalf of the

bidders and perform actions b = (bS)S⊆N on behalf of the subset of players S that give

him the right to play. Given a fixed priority rule, let, without loss of generality, the

permutation applied to be once again γ. Denote by Tj, j = 1, . . . , J subsets of players

whose valuations, ordered by their magnitude, are consistent with the natural order γ.

For every two players i, j ∈ Tj it holds that (vi−vj)(i−j) ≤ 0. Furthermore, let us order

the subsets of players Tj such that min{vi | i ∈ Tj} > max{vi | i ∈ Tj+1}. Therefore, T1

denotes the subset of players with the highest valuations among all players, TJ denotes

the subset of players with the lowest valuations among all players. Note that Tj can

be singleton. Without loss of generality, let us assume that the search engine sets a

positive reserve price r > 0. Finally, let us denote by Tc the subset of players which

contains the critical player ic for which it holds that either s(v, ic) = m, i.e. he is the

player with the lowest valuation among those who are assigned to a real position, or,

vic ≥ r > v(ic+1), i.e. he is the player with the lowest valuation that is still greater or

equal to the reserve price. Let us denote by κ the smallest increment, and let us assume

that κ is infinitesimally small. The following mediator exploits the search engine on

behalf of the bidders in a bidder-optimal way, and in equilibrium, all players choose to

use the service of the mediator:

Proposition 3 The Collusive Mediator.

(a) If all bidders decide to use the service of the mediator, let mN(v) = b(v), where

b(v) is defined as follows:
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– bi(v) = r + (c− j) · κ for every player i ∈ Tj < Tc

– bi(v) = r for every player i ∈ Tc such that vi ≥ vic

– bi(v) = 0 for every player i ∈ Tc such that vi < vic and for every player

i ∈ Tj > Tc

(b) For every strict subset S ⊂ N, mS(vS) = vS for every vS ∈ VS.

Proof. Observe that the vector of bids mN(v) = b(v) as defined above is by construc-

tion the smallest possible vector of bids that yields an efficient allocation. Let us denote

the collusive outcome generated by the mediator by ϕmC
. In order to show that it is an

equilibrium strategy in the mediated game GC,GSP,m for every player i ∈ N to use the

service of the mediator, assume all players but one decide to use his service. First, as-

sume that s(v, i) > m, i.e. vi < vic . If player i decides to use the service of the mediator,

he would not be assigned to a real position and hence end up with a profit of zero. Now

if he deviates and bids an amount of bi directly in the auction, the mediator submits

the vector of bids m−i(v−i) = v−i on behalf of the other players N\{i}. Therefore, if

vic ≥ bi ≥ vi, he will not be assigned to a real position and therefore this deviation is not

profitable. If bi ≥ vic ≥ vi, player i will have to pay an amount that is greater or equal to

his valuation and therefore end up with a profit of zero in the best case. Hence, bidding

directly in the auction is not profitable for him. Now assume s(v, i) ≤ m. If player i

deviates and participates directly in the auction, once again the vector submitted by

the mediator on behalf of the other players N\{i} becomes m−i(v−i) = v−i. Therefore,

player i’s payment, if he is assigned to a position j ∈ K, will be pj = b(j+1) = v(j+1).

If i ∈ Tc and i is assigned to a real position j, observe that it holds that pj ≥ vic ≥ r,

while if he uses the service of the mediator, his payment will be r. If i ∈ Tj < Tc,

observe that his payment for position j will be pj = v(j+1) ≥ r + (c − j) · κ since κ is

the smallest increment and assumed to be infinitesimally small. Therefore, the payment

of player i in any outcome of the mediated game GC,GSP,m is at least as high as in the

outcome generated by the mediator, ϕmC
, if all players use its service. Thus, it cannot

be profitable for him to bid in the auction directly. �
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Observation 8 The collusive mediator is individually rational.

Proof. Observe that if not all players participate in the auction by using of the

mediator, he submits the vector mS(vS) = vS for the subset of players S that give him

the right to play. By the rules of the auction, no player i ∈ S will pay more than his

bid, and thus, every player that gives the mediator the right to play will end up with

a profit that is nonnegative. Now assume all players to give the mediator the right to

play. For any player i ∈ Tc who is assigned to a real position it holds that vi is at least

as high as r, the price he has to pay in ϕm. For any player i ∈ Tj < Tc, the payment

will be pj = r + (c − j) · κ. Now since min{vi | i ∈ Tj} > max{vi | i ∈ Tj+1} for every

j = 1, . . . , J , the valuation of a player in Tj < Tc is at least as high as r + (c − j) · κ

since κ is the smallest possible increment. Hence, ui(mS(vS),b−S) ≥ 0 for every player

i ∈ S ⊆ N . �

We just showed that a collusive mediation device exists that is individually rational

and exploits the search engine in a bidder optimal way. Though it makes sense to model

the generalized second-price auction under complete information in order to learn about

equilibrium bids and prices, it is not very useful if we investigate its vulnerability to

collusion. Bidders will need a long period of experimentation in order to learn about the

vector of valuations v and may face losses within this period. Now if a new bidder enters

the market, this process must start again to the extent that incumbent bidders have to

learn about the valuation of the entrant and modify the mediation device respectively.

Therefore, it would be eligible to develop a mediator that implements ϕmC
in a game of

incomplete information by truthful mediation. Unfortunately, such a mediator does not

exist, as we will show in the next chapter.

5.2 The Case of Incomplete Information

In this section we will show that no mediator exists that implements an outcome that

is more profitable for the bidders than ϕV CG by truthful mediation and at the same

time preserves an efficient allocation of bidders to positions. Implicitly, this means
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that the collusive mediator introduced above fails to implement ϕmC
under incomplete

information. We will show that every anonymous truth-revealing position auction is

necessarily a Vickrey-Clarke-Groves position auction. But if the mediator can enforce

truth-telling by the bidders only by mimicking VCG, he is restricted at best to the

VCG equivalent outcome. Furthermore, since the revelation principle applies to our

setting as stated in Observation 6, we do not lose any outcome by restricting attention

on outcomes that can be implemented by truthful mediation. Let us summarize these

findings as follows:

Theorem 1 Efficiency implies noncooperative profit levels—even by the use of a mediator—

in any position auction GB.

In the following, we will present a series of arguments in order to prove Theorem 1.

The main part of the proof goes back to (Ashlagi [2008]): We start by introducing a

notion of anonymity of the allocation rule s. We then prove that every position auction

with an anonymous allocation rule is necessarily a VCG auction. What is new is that

we combine these results with the findings we already presented on mediators, which

completes the proof.

Therefore, let us present some findings on truth-revealing position auctions and in-

troduce some additional notational preliminaries before we get involved with the actual

proof. Let us call an allocation rule s implementable if there exist a payment scheme

p such that in the resulting position auction it is a weakly dominant strategy for every

player i to report his utility truthfully. Furthermore, we say that an allocation rule s is

monotone if and only if it holds that

(bi − b′i)(αsi(bi,b−i) − αsi(b′i,b−i)) ≥ 0

for every two bids bi, b
′
i ∈ Vi and for every fixed b−i. The click-through rate of any

bidder i cannot decrease given he raises his bid and the bids of the players N\{i} are

not changed. Equivalently, given the bids of the other players N\{i} to be fixed, it

cannot happen that player i will be assigned to a lower position as a result of raising his

bid. The following lemma is due to (Bikhchandani et al. [2006]):
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Lemma 5 For position auctions it holds that an allocation rule is implementable if and

only if it is monotone.

Proof. The authors show that weak monotonicity is a sufficient condition of dominant-

strategy incentive compatibility for deterministic social choice functions in a model with

multidimensional types, i.e. Vi ∈ Rm
+ for any m ≥ 1, private values and quasi-linear

preferences. Our model fits well into this setting with m = 1. �

Furthermore, let us apply a result obtained by (Holmstrom [1979]) to the context

of position auctions since it will be useful in the following:

Lemma 6 (Holmstrom [1979]) Let s be a welfare maximizer. If the allocation rule s

is implementable by a payment scheme q, (s,q) is a VCG position auction.

Proof. The author showed that the allocation rule in a truth-revealing mechanism

determines the payment function of each agent in a payment scheme up to an additive

constant if the set of valuations of every player is convex. Since in our model every Vi

is convex, Lemma 6 emerges to hold. �

Until now, we have only dealt with standard VCG position auctions and in fact, we

have already shown explicitly, that in a standard VCG position auction, the resulting

allocation rule s is a welfare maximizer since si(v) < sj(v) if and only if vi ≥ vj.

Furthermore, we explicitly showed that s is implementable and observed monotonicity.

But a variety of VCG position auctions exist. Let us introduce the notion of non-

standard VCG position auctions. Non-standard VCG position auctions share the same

allocation rule with standard ones, but payments for each player i differ from standard

payments by an additional payment that does only depend on the bids of the other

players N\{i}. A non-standard VCG position auction would be an intuitive choice

in order to enforce a collusive protocol by a mediation device since they inherit the

most desirable property from standard VCG position auctions, i.e. revealing valuations

truthfully. Unfortunately, they finally fail to establish a cartel for various reasons, as

we will show in the following. Let us formally define a VCG position auction by (s, q̂),

where s is the resulting allocation rule of a standard VCG position auction and q̂ is a
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vector of payments for which it holds that for every player i and for every vector of bids

b ∈ V,

q̂i(b) = qi(b) + gi(b−i), (5.1)

where qi(b) is the standard VCG payment function of player i and gi : V−i → R. Before

we state an important finding, we need to introduce the notion of seller rationality. An

incentive compatible position auction (s,q) is seller rational if for every player i and

every profile of bids b ∈ V it holds that qi(b) ≥ 0. Recall the notion of individual

rationality. From Lemma 2 we know that every standard VCG position auction satisfies

both seller and individual rationality. We will see that this is not true for non-standard

VCG position auctions, as stated in the following lemma:

Lemma 7 (Ashlagi [2008]) Every individually rational and seller rational VCG posi-

tion auction is a standard VCG position auction.

Proof. Let (s, q̂) be a VCG position auction as defined above. In order to prove that

every individually and seller rational VCG position auction is a standard one, we have

to show that for every player i and for every vector of bids b−i, gi(b−i) = 0. Therefore,

suppose in negation that a player i and a function gi(b−i) 6= 0 exist for every b−i ∈ V−i.

Assume first that gi(b−i) < 0. But this implies that for every vi < |gi(b−i)|, since

(by the first part of Lemma 2) pj(b) < b(j+1) < b(j), q̂(i)(vi,b−i) ≤ v(i+1) + g(i)(b−i) ≤

v(i) + g(i)(b−i) < 0 — which contradicts seller rationality. Now suppose in negation

that gi(b−i) > 0. We will construct a vector of bids such that we contradict individual

rationality. Therefore, let bi = inf{xi ∈ Vi|si(xi,b−i) ∈ K}. Monotonicity implies

that si(bi + ε,b−i) < si(bi,b−i). Now since in a VCG position auction it holds that

pm(b) = b(m+1) and by the second part of Lemma 2, it must hold that for a player with

a valuation of bm + ε it holds that qi(bm + ε,b−i) ≥ bm. Now for every 0 < ε < gi(b−i)

this implies that q̂i(bi + ε,b−i) = qi(bi + ε,b−i) + gi(b−i) ≥ bi + ε. Hence, a player with

valuation vi = bi + ε would pay more than his valuation — a contradiction of individual

rationality. �
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Finally, some more notational preliminaries are needed. For every profile of bids

b ∈ V, let us denote by bij the bid profile that results from b if the valuations of players

i, j are exchanged, i.e.

bij = (b1, . . . , bj−1, bi, bj+1, . . . , bi−1, bj, bi+1, . . . , bn).

Recall that we call bi to be distinct in b if bi 6= bj for every player j 6= i. Furthermore,

let us call the vector of bids b to be generic if bi is distinct for every player i ∈ N . We

are now able to introduce a notion of anonymity:

Definition 10 (Ashlagi [2008]) An allocation rule s is anonymous if the following

holds: For every player i, and for every b ∈ V such that bi is distinct in b, sj(b
ij) =

si(b) for every player j.

Observe that this states that if the bid of player i is distinct in b and player i exchanges

bids with player j, it must hold that j receives the previous position of i, but i must

not necessarily be assigned to the previous position of j due to possible ties. If the bid

of player j is also distinct in b, player i receives the former position of j.

Proposition 4 (Ashlagi [2008]) A truth-revealing position auction with an anony-

mous allocation rule is a VCG position auction.

Proof. We need some more notational preliminaries. Let Ṽ = {b ∈ V : b1 = b2 =

. . . = bn}. Let H(b) = {i ∈ N |bi = b(1)} be the set of players that submitted the highest

bid. Furthermore, let h(b) be the the position with the highest index in H(b), i.e. the

worst position a highest bidder is allocated. Formally, h(b) is defined as follows:

h(b) = max{k ∈ K| ∃ i ∈ H(b) : si(b) = k}.

Similarly, let v(b) be the position with the lowest index among all bidders with a non-

highest bid, i.e.

v(b) = min{k ∈ K| ∃ b(k) < b(1)}.

Accordingly, the set of bidders that submitted a bid equal to the one of the respective

player in position v(b) is denoted by V (b) = {i ∈ N |bi = b(v(b))}. With these notational
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preliminaries at hand, we are able to start with the actual prove. Therefore, let (s,p) be a

truth-revealing position auction with an anonymous allocation rule s. From Holmstrom’s

lemma, we know that, in order to show that (s,p) is a VCG position auction, we only

need to prove that s is a welfare maximizer, i.e. s is consistent with the vector of

valuations v, or equivalently, since we have a truth-revealing position auction with the

vector of bids b. Now the only thing we need to show is that a highest bidder can not be

assigned to a lower position than a non-highest bidder, i.e. v(b) ≥ h(b) for every vector

of bids b ∈ B. By a recursive argument, this implies that the allocation s is preserved

with the order of bids. We simply denote for every b−H(b), v(b−H(b)) ≥ h(b−H(b)) and

the proof follows. For every vector of bids b ∈ Ṽ, any allocation rule s is a welfare

maximizer since all participants in the auction are highest bidders. For every b ∈ V\Ṽ,

the proof is more elaborate, which is why we only want to sketch the idea and refer to

(Ashlagi [2008]) for the details. He provides a proof by contradiction. He supposes

in negation that a bid profile b exists such that v(b) < h(b). Initially assuming that

|V (b)| = 1, (Ashlagi [2008]) gets by a series of manipulations of the vector of bids and

by extensive use of monotonicity of s, that every highest bidder and i must be in the

first v(b) positions, contradicting that |H(b) ∪ {i}| ≥ v(b) + 1. But this must be the

case if v(b) < h(b). In the case that |V (b)| > 1, he just derives another vector of bids bl

with the same properties than the initial vector of bids b until it holds that |V (bl)| = 1,

which leaves us with the same contradiction as above. �

We are now able to prove the following proposition very easily, which is our key insight

in order to finally prove Theorem 1:

Proposition 5 (Ashlagi [2008]) Every truth-revealing, individually rational and seller

rational position auction with an anonymous allocation rule is necessarily a standard

VCG position auction.

Proof. By Proposition 4, every truth-revealing position auction (s,p) with an anony-

mous allocation rule must be a VCG position auction, and by Lemma 7, it must neces-

sarily be a standard VCG position auction. �
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By Observation 6, we know that an outcome function ϕ : V→ O is a mediated

equilibrium in a pre-Bayesian game GB = (N,V,O, (ωi)i∈N ,B, ψ) if and only if there

exists a mediator that implements ϕ by truthful mediation, i.e. ϕm(v) = ψ(mN(v)).

Let us consider the generalized second-price auction GB,GSP , which fits into the set

of pre-Bayesian games. Now by Proposition 5, the only truth-revealing, individually

rational and seller rational position auction is a standard VCG position auction, i.e.

ψV CG = (s,pV CG) is the only outcome a ∈ O that can be implemented in a position

auction GB while revealing the valuations of players truthfully. By Definition 5, a

mediator in a pre-Bayesian game GB cannot facilitate transfer payments, he can only

play in the game GB,GSP on behalf of the players and therefore create the new mediated

game GB,GSP,m = (N,V,O, (ωi)i∈N ,B
m, ψm). Recall that this game differs from the

original game only in the set of actions of players Bm and the function ψm that maps

action profiles to outcomes, i.e. ψm(bm) = ψ(mN(bm)(b
m
N(bm)),b

m
−N(bm)). Now since

the sets of possible outcomes O in the two games are equivalent, and the underlying

mechanism that maps action profiles to outcomes, i.e. the function ψ : B → V varies

only by its arguments, ψV CG remains the only outcome that can be implemented in

GB,GSP,m and has the property to reveal valuations truthfully. But a mediator who

has to stick to the rules of GB, i.e. to the function ψ : B → V, can only ensure

the players to reveal their valuations truthfully by a set of prices with the respective

property, i.e. ψm(bm) = ψ(mN(bm)(b
m
N(bm)),b

m
−N(bm)) = (s,pV CG). Hence, no mediator

exists that can implement an outcome ϕmC
that is more profitable for the bidders than

ϕm(v) = ψV CG(v) and preserve efficiency at the same time. This completes the proof

of Theorem 1. �

We just saw that no mediator exists who is able to establish an efficient cartel. We

want to introduce a new form of a mediation device in the following chapter, i.e. a

mediator who is equipped with the ability to facilitate transfer payments among players,

and investigate if such a mediator is able to successfully establish an efficient cartel.
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5.3 Collusion with Side Payments

The most basic model of collusion was introduced in a seminal paper by (Graham,

Marshall [1987]). It was further extended by (McAffee, McMillan [1992]), who

investigate both weak and strong cartels. A strong cartel is a consortium of players

that is able to exclude new entrants and realize transfer payments among the members

of the cartel. However, one of cartel’s main difficulties is to find a way to divide the

profits of the collusive agreement since each member has an incentive to claim for an

even bigger share of the spoils. In order to do so, a common way is to conduct prior

to the auction a so-called pre-auction knockout (PAKT). In (McAffee, McMillan

[1992]), it is shown that an incentive compatible, efficient mechanism exists that is

implementable by a pre-auction. The idea is fairly simple. The bidder who wins the

pre-auction participates in the legitimate auction, while all other members of the cartel

stay absent. The bidder then pays each of the losing bidders in the pre-auction an equal

share of the difference between his bid in the knockout and the price he actually pays in

the legitimate auction, which is in general equal to the reserve price if the cartel is all-

inclusive. Such a mechanism can easily be thought of as a kind of mediation device. The

mediator conducts the pre-auction and bids the reserve price on behalf of the winning

bidder and zero on behalf of all other members of the cartel in the legitimate auction.

The only difference to the mediator above is his ability to facilitate side payments.

However, the mechanism breaks down if we relax the assumption of the cartel being

able to exclude new entrants. High profits earned by successful collusion attract so-

called parasite bidders who only participate in the auction in order to participate in the

cartel’s sharing of profits—although they would never actually win the auction. If the

number of parasite bidders is large enough, the share of cartel’s profits for each member

diminishes. Therefore, the cartel must discourage the entry of parasite bidders. This can

be done by offering zero profits to bidders with low values. However, this implies that

some bidders receive zero transfers and thus, any transfer scheme cannot be lump-sum.

Therefore, the highest bidder that receives no transfer has an incentive to overstate his

valuation. (McAffee, McMillan [1992]) summarize:
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“Collusion contains the seeds of its own destruction.”

Our impossibility result in the previous section is aligned with another finding of (McAf-

fee, McMillan [1992]). For a single-item first-price auction, they state:

“If a cartel member whose valuation is less than or equal to the minimum

price r is constrained to earn zero profits, efficiency implies noncooperative

profit levels.”

A mediator that searches for a way to implement an efficient collusive scheme in the gen-

eralized second-price auction is required to align incentives in such a way that bidders do

not overstate their valuations. However, this is only possible by a set of noncooperative

prices if the entry of parasite bidders cannot be prevented and thus the incorporation of

side payments is no longer an option. Therefore, independent of the existence of an in-

centive compatible and efficient mechanism for the generalized second-price auction that

incorporates side payments (given new entrants can be excluded), no collusive scheme

exists that exploits the search engine and preserves efficiency at the same time.

A natural next step for future work would be to investigate if a modified bid rotation

scheme in the sense of Theorem 1 in (McAffee, McMillan [1992]) can be used

to guarantee bidders in a generalized second-price auction higher levels of utility than

those obtained by noncooperative play. Such a bid rotation scheme would instruct every

bidder to submit a bid equal to the reserve price whenever his valuation exceeds r or

zero otherwise, i.e.

bi(vi,v−i) =

0 vi < r

r vi ≥ r

(5.2)

Note that by the use of a mediator who bids according to 5.2 if all players give him the

right to play, i.e.

mN(v) =

0 vi < r

r vi ≥ r

(5.3)

and mS(vS) = vS otherwise, it does not pay off to report a false value to the mediator.

However, it is still necessary to prove whether bidders earn higher profits by using the
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service of the mediator than by bidding in the auction directly and if the resulting

profits are higher than in any noncooperative equilibrium, since the mediator is useless

otherwise. If the search engine employs a random priority rule, each bidder who submits

a positive bid is assigned to a position j ∈ K ∪ {m+} arbitrarily. If the auctioneer uses

a fixed priority rule, there can be thought of any arbitrary mechanism that instructs

bidders to bid similar to the mediator presented in Proposition 3, in particular as if every

Tj was singleton. The bid rotation scheme obviously abandons efficiency. Nevertheless,

in the case of a single-item first-price auction with free entry, a similar scheme maximizes

bidders’ expected profits. In particular, profits are greater than in any noncooperative

equilibrium.

5.4 Repeated Play

In Section 3.2, we stated that the VCG equivalent outcome of the static game of com-

plete information can be obtained under incomplete information by a process in which

bidders follow a simple strategy, i.e. raising their bids slightly until it is no longer

profitable, following the argumentation of (Edelman, Ostrovsky, Schwarz [2007]).

In this case, the equilibrium is regarded as a stable rest point of natural bidder ad-

justment dynamics. In this section, we finally allow for repeated play and investigate

collusion in an infinitely repeated generalized second-price auction. Some preliminar-

ies are necessary. We will follow a model of infinitely repeated games according to

(Mas-Colell, Whinston, Green [1995]). Let us assume there is an infinite num-

ber of discrete stages, and at each stage, players interact strategically in a one-shot

fashion. In our context, an infinitely repeated generalized second-price auction is a

tuple GB,GSP,∞ = {EP ,V,O,B, ψ, γ
t, (δi)i∈N}, where ψ(b) = (s(b),qGSP (b)). Let

b = {b1,b2, . . . ,bt, . . .}, bt ∈ B be a sequence of bids of players. The total utility

of each player is the discounted sum of stage utilities, i.e. Ui(b) =
∑∞

t=1 δ
t−1
i ui(bt). In

the following, we will search for a collusive scheme that constitutes a subgame-perfect

Nash equilibrium in GB,GSP,∞. In an infinitely repeated game, the space of Nash equi-
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librium strategies expands considerably. In the following, we assume that players use

the service of a mediator in order to establish a successful cartel. Under complete in-

formation, perfect collusion can be obtained simply by applying the collusive mediator

as defined in Proposition 3 at every stage of the game. Since using the service of the

mediator constitutes a Nash equilibrium at any stage t, it constitutes a subgame perfect

Nash equilibrium in the infinitely repeated game GB,GSP,∞. However, in an infinitely

repeated generalized second-price auction, bidders are able to establish a cartel even

without the use of a mediator by playing a grim-trigger strategy, though the cartel is

not optimal in the sense of the cartel that employs the collusive mediator. In particu-

lar, bidders submit bids equal to the mediator as defined in Proposition 3 with a slight

modification: They bid infinitesimally higher than the valuation of the first bidder that

is not assigned to a real position anymore. The explicit formula is obtained by replacing

r in Proposition 3 by v(s(v,ic)+1). Whenever a bidder deviates, the bidders play the VCG

equivalent Nash equilibrium strategies in all stages of the game that still follow. Let us

call this strategy profile Collusion. The following result is due to (Vorobeychik,

Reeves [2007]), assuming every Tj to be singleton:

Proposition 6 (Vorobeychik, Reeves [2007]) The Collusion strategy profile is

a subgame perfect Nash equilibrium if, for all players i,

δi ≥ max
j∈K,k≤j

(αk − αj)(v(j) − v(m+1))− (αk(m− k)− αj(m− j))ε
αk(v(j) − v(m+1))− αjv(j) − αk(m− k)ε+ Vsum

, (5.4)

where Vsum =
∑m

k=j+1 v(k)(αk−1 − αk) + v(m+1)αm.

We omit the proof and refer to the original paper. The authors observe that collusion

seems likely if the number of slots is below about 8, but will not be feasible anymore

with even a few more slots since the bound on the discount factor δ approaches 1. By

playing a stronger punishment strategy, such as playing the worst equilibrium strategy

profile of bids as given in 3.12, the collusive agreement appears to be stronger since the

bounds on δ decrease.

However, is a collusive agreement that implements an efficient allocation still possible

under incomplete information in an infinitely repeated generalized second-price auction?
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The answer is yes, in contrast to the results obtained in the case of static models. Again,

(Vorobeychik, Reeves [2007]) present an explicit result. Still, players are required to

reveal their valuations honestly in order to implement an efficient allocation. This can

be achieved by letting the bidders play the VCG equivalent symmetric Nash equilibrium

for as many stages T as necessary such that it is not profitable anymore to misrepresent

valuations, and play the collusive scheme as stated above afterwards. In the sense of the

thesis at hand, a mediator is designed that acts in the sense of the VCG mediator from

Proposition 2 for T stages, and in the sense of the collusive mediator from Proposition

3 afterwards. However, since there are T stages in which bidders are required to play

a noncooperative equilibrium, the collusive scheme is far from optimal. Furthermore,

the agreement is very limited since it only holds if player’s discounted maximum payoff

from the collusion game does not exceed the ratio of a player’s click-through rate in his

current position, say j, and the click-through rate of position j + 1. Hence we regard

the collusive agreement to be not satisfactory at all.

More promising approaches are those of (Aoyagi [2003]) and (Feng, Zhang [2007]).

The former shows that collusion is possible through inter temporal payoff transfers that

serve as substitutes for monetary side payments. He presents a bid rotation scheme in a

model of two bidders that engage for a single product in an infinitely repeated auction of

the same format at any stage. It can be shown that by playing asymmetric equilibrium

strategies, players can achieve even higher profits than in a bid rotation scheme that

employs identical bids, which is shown to be optimal for a variety of parameters by

(Athey, Bagwell, Sanchirico [2004]). In particular, (Aoyagi [2003]) develops a

collusive scheme that makes use of a mediation device in terms of (Myerson [1986])

who implements the respective asymmetric equilibrium strategies. However, it can be

easily thought of a mediator in terms of the thesis at hand that does the job: The

mediator uses a random device in order to play on behalf of the players. In a symmetric

phase S, the mediator implements the efficient allocation by bidding the reserve price

on behalf of the player who reports a higher valuation v̂i and zero for the other player.
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More formally, we get for every player i and every stage t ∈ S,

mS(v) =

r v̂i ≥ max{r, v̂j},

0 otherwise.

The ex-ante profit of the cartel associated with mS is obviously optimal if the players

report truthfully. However, this is not the case since every player has an incentive

to overstate his valuation. Therefore, there is an incentive compatible second phase

Ai(i = 1, 2) to which the mediator switches with positive probability. It disfavors the

bidder that reported a higher valuation by promising to him a lower continuation payoff.

In particular, the mediator bids on behalf of player i (who reported a higher value in

phase S) the reservation price if his valuation exceeds the reservation price and bidder

j’s valuation does not; and zero otherwise. It can be shown that phase Ai is incentive

compatible. It will last for m stages before play returns to phase S. In fact, (Aoyagi

[2003]) proves that the bid rotation scheme is incentive compatible and generates strictly

higher profits for the bidders than any noncooperative equilibrium for sufficiently patient

players. Note that the mediator overcomes the problem of parasite bidders, since a bidder

who would overstate his valuation by pretending to have a valuation that is higher than

the reserve price will earn negative profits at some stages of the game. Since there

are stages in which another bidder than the one with the highest valuation obtains

the product, the cartel cannot extract the full surplus anyway. A prevalent deficiency

remains in the model of (Aoyagi [2003]). Such a more sophisticated mechanism requires

a considerable amount of communication. However, the logic underlying the bid rotation

scheme is striking and simple: Today’s winners compensate today’s losers by deferring

to them in later stages.

The significant need of communication could be reduced by the use of a mediator in

terms of the thesis at hand. One can think of a modified bid rotation scheme in the

spirit of (Aoyagi [2003]) that exploits the generalized second-price auction and makes

use of a mediator in addition. If the players are allowed to report to the mediator

only once in advance of the legitimate auction, the game would effectively reduce to a

static game. We leave the design of such schemes for future work. However, optimal

54



5 Collusion in a Generalized Second-Price Auction

collusion in which bidders extract the full surplus cannot be attained. This is in line

with the findings of (Feng, Zhang [2007]). They find in a model of sponsored search

auctions that advertisers will never form a perfect collusion since low-type bidders always

have an incentive to overstate their valuations. They state that similar to the case in

(Athey, Bagwell, Sanchirico [2004]), advertisers pay an “information cost” to

reveal their true values associated with keywords through price wars. These results are

finally in line with the findings of (Fudenberg, Levine, Maskin [1994]), who show

that efficiency results are only available in independent private value models with finite

signal. Obviously, players’ types are not finite in our setting.

Let us conclude this chapter by shortly mention how sellers may react as a response

to possible collusion. A well-studied option is to choose an appropriate reserve price.

In repeated auctions, the corresponding treatment would be to choose the reservation

price as a function of game history. Recent work of (Che, Kim [2009]) suggests that

the auctioneer can retain any revenue that is feasible without collusion by prescribing a

non-trivial probability of not selling the product to collusive bidders.
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6.1 Asymmetric Equilibria

In our analysis of equilibrium behavior in Chapter 3 we focused on a particular subset of

equilibria, i.e. symmetric Nash equilibria. These equilibria are symmetric in the sense

that every player i expects to pay the same price for a given position j. But notice that

we ignored the existence of a certain form of asymmetry in bidders’ incentives to bid for

a given position. Whenever a bidder wants to be assigned to a position j > s(b(v), i),

he just has to underbid the price he pays, i.e. the bid of the player assigned to position

j and finally pays b(j+1), while he has to overbid the bid of a player assigned to position

j for every j < s(b(v), i) and hence pays b(j). Thus, we concentrated on a subset of

equilibria in which bidders not even have an incentive to win a position j < s(b(v), i) if

they are only charged a price of b(j+1) rather than b(j). Hence, we provide a more general

definition of equilibrium prices in the game GC,GSP .

Definition 11 A Nash equilibrium set of prices in the game GC,GSP satisfies

αj(v(j) − pj) ≥ αk(v(j) − pk) ∀ k > j (6.1)

αj(v(j) − pj) ≥ αk(v(j) − pk−1) ∀ k < j (6.2)

where pj = b(j+1).

(Varian [2007]) finds that the lower bound of Nash equilibrium prices is smaller or

equal the lower bound of symmetric Nash equilibrium prices. The upper bounds are

equivalent, which is not surprising since the conditions that restrict equilibrium bids on
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the upper bound are the same in both definitions. Hence the same holds for the revenue

of the search engine. (Borgers, Cox, Pesendorfer, Petricek [2007]) show that

there exist asymmetric equilibria that yield inefficient allocations. This is a contrary

result to the findings about properties of symmetric Nash equilibria. They provide a

modified vector of symmetric Nash equilibrium bids that constitutes an asymmetric

equilibrium such that the positions of the players assigned to the two highest positions

are exchanged. This is reached in particular by making the bidder in the former position

two of the symmetric Nash equilibrium submit a very large bid, and the bidder in former

position one to bid infinitesimally higher than the bidder in position three. Moreover,

they show that for the case of N = K = 3, there exist asymmetric equilibria in which any

player i can win any position j ∈ K if certain conditions on marginal values of bidders

hold. The authors judge these conditions to be “very weak”. Hence they question the

focus on symmetric Nash equilibria. In particular, they show that the asymmetric Nash

equilibria that they present cannot be ruled out by means of neglecting Nash equilibria

in weakly dominated strategies. They provide explicit (and relatively wide) bounds on

bids that are not weakly dominated. However, they restrict attention only to the case

were the dominating strategy is a pure strategy.

A quite striking, practical argument for the selection of symmetric Nash equilibria

remains. The generalized English auction that (Edelman, Ostrovsky, Schwarz

[2007]) introduced in order to illustrate the process by which bidders may coordinate to

the VCG equivalent outcome, i.e. by raising their bids slightly until this is no longer

profitable.

6.2 Mediators in General Position Auctions

In (Ashlagi et al. [2008]), the authors present a characterization of a group of position

auctions for which a mediator exists that is able to implement ϕV CG. Additionally, they

show an impossibility result for self-price position auctions, i.e. position auctions in

which each bidder has to pay his bid. We will shortly sketch their very general findings
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and present a mediator for the generalized third-price position auction (GTP) that we

construct due to the authors conventions. We omit all proofs and refer to the original

paper. Observe the following preliminaries by (Ashlagi et al. [2008]) before we finally

present a mediator for the GTP position auction:

Definition 12 (GLP Position Auctions) A position auction G is a generalized lower

price auction, if the payment of each player who is assigned to a position in K is a

function of the bids of players assigned to “lower” positions (i.e. positions with higher

indices). More specifically, for every j ∈ K and for every two bid profiles b1,b2 ∈ B

such that b1(l) = b2(l) for every l > j, pj(b
1) = pj(b

2).

Definition 13 (VCG Cover) A position auction G is a VCG cover if for every v ∈ V

a vector of bids b ∈ B exists such that ψG(b) = ϕV CG(v), where ψG(b) = (s(b), q(b)).

Definition 14 (Monotonicity) A position auction G is monotone if pj(b) ≥ pj(b
′) for

every j ∈ K and for every b ≥ b′, where b ≥ b′ if and only if bi ≥ b′i for every i ∈ N .

Proposition 7 (Ashlagi et al. [2008]) In a position auction GB, an individually

rational mediator exists that implements ϕV CG in GB if the following three conditions

hold:

(a) 1. GB is a GLP position auction.

2. GB is a VCG Cover.

3. GB is monotone.

(b) The set of conditions 1-3 is minimal. If any of the conditions 1-3 is dropped, one

can construct a position auction which satisfies the two other conditions, but ϕV CG

cannot be implemented by an individually rational mediator.

While it is comparatively easy to verify if a position auction is monotone and if it

holds that it is a GLP position auction, it is sometimes more involved to verify that

an arbitrary position auction possesses the VCG cover property. Therefore, the authors
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provide some characteristics that are necessary for a position auction to be a VCG cover.

These imply the payment function pj(·) to be continuous as well as some monotonicity

requirements of pj(·). We will not present these characteristics in detail and refer to the

original paper since it is not essential to capture the idea of the following findings. In

order to proof that the set of conditions is minimal, the authors show that whenever

a position auction is a VCG cover and either monotonicity or GLP property but not

both conditions hold, assuming that a mediator exists that implements VCG by truthful

mediation yields a contradiction. If a position auction is not a VCG cover, no mediator

can implement the VCG outcome by truthful mediation anyway. Let us now exemplarily

present a mediator for the generalized third-price position auction that implements the

VCG equivalent outcome, i.e. ϕm = ψV CG(v):

Proposition 8 (VCG Mediator for GTP) Let n ≥ m + 2. The following mediator

implements ϕV CG in a third price position auction:

(a) For every v ∈ V let mN(v) = b(v), where b(v) is defined as follows:

– bi(v) = pV CGs(v,i)−2(v) for every player i such that 3 ≤ s(v, i) ≤ m.

– bi(v) ∈
[
pV CGm (v), pV CGm−2 (v)

)
for the player assigned to position m + 1, i.e.

s(v, i) = m+ 1.

– bi(v) = pV CGm (v) for the player assigned to position m+2, i.e. s(v, i) = m+2.

– bi(v) = pV CG
m

1+ρ
, for every player i such that s(v, i) > m + 2, and for some

arbitrary but fixed ρ > 0.

– bi(v) = ε+η+pV CG1 (v) for the player assigned to position 1, i.e. s(v, i) = 1,

and for some arbitrary but fixed ε > 0, η > 0.

– bi(v) = ε+ pV CG1 (v) for the player assigned to position 2, i.e. s(v, i) = 2 for

some arbitrary but fixed ε > 0.

(b) Let ε > 0 be fixed. For every i and for every v−i ∈ V−i, let vi = (v−i,M(v−i)),

where M(v−i) = ε + maxj 6=ivj. mN\{i}(v−i) = b−i(v
i) for every i ∈ N and every

v−i ∈ V−i.
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(c) For every S ⊂ N such that 1 ≤ |S| ≤ n− 2, mS(vS) = vS for every vS ∈ VS.

Proof. Analogous to the proof in Ashlagi et al. [2008] it can be shown that

ϕm = ψV CG = (s(v),q(v)). Furthermore, the mediator described above is constructed

according to the restrictions of Mediator 2 in Ashlagi et al. [2008], where it is proven

that such a mediator implements ϕV CG by truthful mediation under certain conditions,

which emerge to hold for the given setting. �

Let us conclude by shortly illustrating the idea behind the mediator above. Obviously,

given all other players report truthfully to the mediator, reporting a wrong value to the

mediator cannot be profitable for any player i ∈ N since VCG is truthful. If all players

but i use the service of the mediator, the mediator pretends that the player who deviates

has the highest among all values and submits a vector of bids b−i(v
i) accordingly. There

exist some value ṽi 6= vi that yields the same profit for player i when reported to the

mediator than participating directly and bidding bi. But since VCG is truthful, this

cannot be profitable. Finally, it can be shown that the VCG mediator for the generalized

third-price position auction is individually rational since by submitting a vector of bids

b−i(v
i) and by the first part of Lemma 2, he can still guarantee each bidder who uses

his service a profit greater than or equal zero.

6.3 Position Auctions with Quality Factors

In practice, companies like Google apply a slight variation of position auctions as mod-

eled in this thesis in order to sell ads. They introduce quality factors, i.e. preferences

over players. We already introduced the idea in Section 2.1 under the term of relevance.

Such preferences express the probability that an ad of a certain advertiser is clicked if

it is shown in a certain position. This makes perfect sense from the point of view of

the search engine, since the search engines goal is to maximize revenue, i.e. the number

of paid clicks on ads. Formally, we omit the assumption that the click-through rate for

any position j does not depend on the identity of a player. Therefore, let us denote

by βi > 0 a fixed quality factor for every player i ∈ N . The click-through rate for any
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bidder i assigned to position j therefore becomes ς ij = βiαj. Let β = (β1, . . . , βn) be

the vector of quality factors. Let G(α,p) denote an arbitrary position auction. Now if

quality factors are introduced for each player, we define the new auction with quality

factors by GQ(β, α,p).

Note that, if we assume that the click-through rate of any position j depends not only

on the position but also on the identity of the player, the former efficient position auction

that ranks players by their bids is not efficient anymore. Let us demonstrate this finding

by a simple example. Therefore, assume there are two players i, j who are assigned to

a position in K respectively. Let the valuation of player i be vi = 8 and βi = 1. For

player j let vj = 14 and β = 1/2. Now since the allocation rule s of a position auction

without quality factors is consistent with the vector of valuations, player j is assigned to

a position s(b, j) < s(b, i). However, the revenue of player i per click equals vi · βi = 8,

while the revenue of player j is only vj · βj = 7. But efficiency requires player i to be

assigned to a better position than player j. In GQ, players are ranked according to the

vector of adjusted bids βb = (β1b1, β2b2, . . . , βnbn). Let us denote the resulting allocation

by sβ(b) = s(βb). A position auction with quality factors ranks players efficiently. We

will omit the proof since it is very similar to the proof of Observation 1.

Furthermore, let i(βb, j) be the player that is assigned to position j, i.e. si(βb,j) = j.

Let pij(βb) = bi(βb,j+1)βi(βb,j+1). A player i assigned to position j, i.e. s(βb, i) = j has

to pay 1
βi
pj(βb) since by construction and in order to receive position j it must hold

that biβi ≥ bi(βb,j+1)βi(βb,j+1). Now note that we can express every position auction with

quality factor as a position auction without quality factors if we redefine the valuation

of every player to be the product of his quality factor and his valuation, i.e. biβi. To see

that this is true, observe that we can write the symmetric Nash equilibrium requirement

for every player i as stated in Definition 3.1 for a position auction with quality factors

as

(v(j) −
1

βi
pij(βb))βiαj ≥ (v(j) −

1

βi
pik(βb))βiαk ∀ k ∈ K.

But this can be simply written as

(βiv(j) − pij(βb))αj ≥ (βiv(j) − pik(βb))αk ∀ k ∈ K.
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Now the same logic as in Chapter 3 can be applied. Let us call every position auction

with quality factors a β−position auction. Let the β−VCG position auction be denoted

by GQ,V CG(β, α,pV CG). By using a result of (Roberts [1979]), (Ashlagi et al.

[2008]) state that “the β−VCG position auction chooses the allocation of a weighted VCG

mechanism with a vector of weights β, and the payment of a player equals the standard

weighted VCG payment.” But since a position auction with quality factors is not different

from a position auction without quality factors with an adjusted vector of valuations βv,

and since we proved that for every vector of valuations v ∈ V, an individually rational

mediator exists that implements the VCG outcome function in G(α,p), there must exist

an individually rational mediator in GQ(β, α,p) that implements the β−VCG outcome

function. In particular, the β−version of the VCG-mediator does the job. All results on

collusive mediation devices still hold, as the case may be in adjusted versions.

6.4 Utility Symmetry

We define another type of anonymity and show that the results obtained in Section 5.2

hold for this notion as well. We say that an allocation rule is utility symmetric, if for

any two players who report their types truthfully and exchange bids and valuations, it

holds that they will end up with the utility of the other player respectively. The formal

definition is taken from (Ashlagi [2008]):

Definition 15 A position auction is called utility symmetric if for every two distinct

players i, j, for every vector of bids of the other players b−(i,j) and for every vi, vj it

holds that

uj(vi,b
ij) = ui(vi,b),

where b = (vi, vj,b−(i,j)).

Utility symmetry is not equivalent to the notion of an anonymous allocation rule. One

can construct position auctions that have an anonymous allocation rule, but are not

utility symmetric and vice versa. (Ashlagi [2008]) shows that “every truth-revealing

62



6 Variations

utility symmetric position auction is a VCG position auction.”

In the proof he makes use of the following lemma that goes back to (Myerson [1981])

for the case of a position auction with a single position, i.e. m = 1, which was extended

to general position auctions by (Archer [2004]):

Lemma 8 (Myerson [1981]) If a position auction (s,p) is truth-revealing then for

every vi ∈ Vi and every b−i ∈ V−i, it holds that

ui(vi, (vi,b−i)) = ui(0, (0,b−i)) +

∫ vi

0

αsi(x,b−i)dx. (6.3)

It states that the expected payoff of a bidder in a truth-revealing direct position auction

depends only on the allocation rule s, and that for any two truth-revealing position

auctions with the same allocation rule s, the payoff function for each bidder differs by

at most an additive constant, which is equal to the utility of the worst possible type.

Proof. Lemma 8 states a by now well-known property of truth-revealing mechanisms.

A short but well-arranged review is given in the chapter on mechanism design in (Kr-

ishna [2002]). For more details, we refer to the original paper respectively. �

(Ashlagi [2008]) shows in a similar manner as in the proof for an anonymous allo-

cation rule and by use of Lemma 8 above, that a bid profile for which a non-highest

bidder would receive a higher position than a highest bidder contradicts utility sym-

metry. Therefore, the allocation rule s of a truth-revealing utility symmetric position

auction (s,p) must be a welfare maximizer and hence by Holmstrom’s Lemma it must

be a VCG position auction. Thus, the results from Section 5.2 extend to the case of

utility symmetric position auctions.
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In the thesis at hand, a mechanism is presented that is the most frequently used mecha-

nism in the Internet advertising market today and generates billions of dollars of annual

revenues. In its current version, it was introduced not earlier than in February 2002.

The so-called generalized second-price auction places links of advertisers to positions on

a screen is descending order of their bids, and every advertiser is charged the bid of the

advertiser who is ranked only one position below. We find that, although the mechanism

resembles the VCG mechanism, it is not strategically equivalent. In particular, it lacks

too many of the desirable properties of a VCG auction, such as, truth-telling to be a

weakly dominant strategy or an equilibrium in dominant strategies. Nevertheless, we

show in a static model of complete information that among the set of symmetric Nash

equilibria, the most profitable equilibrium outcome for the bidders and hence the worst

equilibrium outcome for the search engine is equivalent to the equilibrium outcome of a

corresponding position auction that is designed according to the rules of VCG. Though

the complete information framework is far from perfect, the results obtained serve as

an important estimate of equilibrium behavior under incomplete information. It is as-

sumed that bidders experiment with their bids over time and thereby gather enough

information to conduct other bidders’ valuations. Furthermore, due to the highly dy-

namic structure of the auction—bidders can change their bids whenever they want—bids

in any stable equilibrium must be a static best response to each other. In fact, empirical

results by (Varian [2007]) suggest that the actual behavior of bidders can be explained

approximately well by the results obtained from a static model of complete information.

Moreover, we find that bidders can coordinate to the bidder-optimal outcome by the use
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of a mediation device, even if the vector of valuations is not common knowledge. We

present a formal definition of mediators and apply it to the context of position auctions.

A mediator in terms of this thesis is a reliable entity that can bid on behalf of the ad-

vertisers in the auction, but bidders are free to choose whether to use the service of the

mediator or participate in the auction directly. We design a mediator that coordinates

bidders to a collusive outcome in a static model of complete information in which bidders

only pay the reserve price plus some minimum increment. In equilibrium, all bidders

profit from using the service of the mediator.

We show an impossibility result under incomplete information. Efficiency implies non-

cooperative profit levels—even by the use of a mediator—in any position auction with

incomplete information. We find that even if we equip the mediator with the ability to

facilitate transfer payments among bidders, no efficient collusive protocol exists. This is

due to the fact that profitable collusion attracts parasite bidders who only participate

in the auction to get a share of the cartel’s profits and hence, transfer payments are

no longer an option. Finally, we extend our model and allow for repeated play. We

present a collusive scheme that constitutes a subgame-perfect Nash equilibrium in an

infinitely repeated generalized second-price auction. Nevertheless, firms cannot form a

perfect cartel. Through price wars, they pay a significant information cost in order to

learn about each other’s types before they can successfully establish an efficient cartel.

The relative robustness to collusion that we observe is a remarkable feature of a mech-

anism that developed as a result of the evolution from inefficient mechanisms that were

gradually replaced by superior designs. Despite its simplicity and the existence of stable

equilibria, this seems to us a decisive factor for its immense commercial success.
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